A Possible Mechanism for Contact Nucleation

William A. Cooper National Center for Atmospheric Research, Boulder, Colo. 80303

Search for other papers by William A. Cooper in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A contact nucleation mechanism is suggested, by which ice embryos formed on a nucleus in vapor are able to nucleate supercooled water on contact. Using conventional nucleation theory, the activity of a contact nucleus is calculated as a function of the contact angle of ice on the nucleus in vapor, and as a function of nucleus size. It is predicted that the threshold supercooling required for deposition nucleation should be about 2.3 times as great as that required for contact nucleation (for nuclei >0.1 μm radius), and this prediction is found to be in reasonable agreement with the limited experimental evidence. A relation between the deposition and contact nucleus concentrations in air samples is predicted.

Abstract

A contact nucleation mechanism is suggested, by which ice embryos formed on a nucleus in vapor are able to nucleate supercooled water on contact. Using conventional nucleation theory, the activity of a contact nucleus is calculated as a function of the contact angle of ice on the nucleus in vapor, and as a function of nucleus size. It is predicted that the threshold supercooling required for deposition nucleation should be about 2.3 times as great as that required for contact nucleation (for nuclei >0.1 μm radius), and this prediction is found to be in reasonable agreement with the limited experimental evidence. A relation between the deposition and contact nucleus concentrations in air samples is predicted.

Save