Two-Stream Approximations to Radiative Transfer in Planetary Atmospheres: A Unified Description of Existing Methods and a New Improvement

W. E. Meador NASA, Langley Research Center, Hampton, VA 23665

Search for other papers by W. E. Meador in
Current site
Google Scholar
PubMed
Close
and
W. R. Weaver NASA, Langley Research Center, Hampton, VA 23665

Search for other papers by W. R. Weaver in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Existing two-stream approximations to radiative transfer theory for particulate media are shown to be represented by identical forms of coupled differential equations if the intensity is replaced by integrals of the intensity over hemispheres. One set of solutions thus suffices for all methods and provides convenient analytical comparisons. The equations also suggest modifications of the standard techniques so as to duplicate exact solutions for thin atmospheres and thus permit accurate determinations of the effects of typical aerosol layers. Numerical results for the plane albedos of plane-parallel atmospheres (single-scattering albedo = 0.8, 1.0; optical thickness = 0.25, 1, 4. 16; Henyey-Greenstein phase function with asymmetry factor 0.75) are given for conventional and modified Eddington approximations, conventional and modified two-point quadrature schemes, the hemispheric-constant method and the delta-function method, all for comparison with accurate discrete-ordinate solutions. A new two-stream approximation is introduced that reduces to the modified Eddington approximation in the limit of isotropic phase functions and to the exact solution in the limit of extreme anisotropic scattering. Comparisons of plane albedos and transmittances show the new method to be generally superior over a wide range of atmospheric conditions (including cloud and aerosol layers), especially in the case of nonconservative scattering.

Abstract

Existing two-stream approximations to radiative transfer theory for particulate media are shown to be represented by identical forms of coupled differential equations if the intensity is replaced by integrals of the intensity over hemispheres. One set of solutions thus suffices for all methods and provides convenient analytical comparisons. The equations also suggest modifications of the standard techniques so as to duplicate exact solutions for thin atmospheres and thus permit accurate determinations of the effects of typical aerosol layers. Numerical results for the plane albedos of plane-parallel atmospheres (single-scattering albedo = 0.8, 1.0; optical thickness = 0.25, 1, 4. 16; Henyey-Greenstein phase function with asymmetry factor 0.75) are given for conventional and modified Eddington approximations, conventional and modified two-point quadrature schemes, the hemispheric-constant method and the delta-function method, all for comparison with accurate discrete-ordinate solutions. A new two-stream approximation is introduced that reduces to the modified Eddington approximation in the limit of isotropic phase functions and to the exact solution in the limit of extreme anisotropic scattering. Comparisons of plane albedos and transmittances show the new method to be generally superior over a wide range of atmospheric conditions (including cloud and aerosol layers), especially in the case of nonconservative scattering.

Save