Computation of Infrared Cooling Rates in the Water Vapor Bands

Ming Dah Chou Laboratory for Atmospheric Sciences, Goodard Space Flight Center, Greenbelt, MD 20771

Search for other papers by Ming Dah Chou in
Current site
Google Scholar
PubMed
Close
and
Albert Arking Laboratory for Atmospheric Sciences, Goodard Space Flight Center, Greenbelt, MD 20771

Search for other papers by Albert Arking in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A fast but accurate method for calculating the infrared radiative terms due to water vapor has been developed. It makes use of the behavior in the far wings of absorption lines to scale transmission along an inhomogencous path to an equivalent homogeneous path. Rather than using standard conditions for scaling, the reference temperatures and pressures are chosen in this study to correspond to the-regions where cooling is most significant. This greatly increases the accuracy of the new method. Compared to line-by-line calculations, the new method has errors up to 4% of the maximum cooling rate, while a commonly used method based on the Goody band model (Rodgers and Walshaw, 1966) introduces errors up to 11%. The effect of temperature dependence of transmittance has also been evaluated; the cooling rate errors range up to 11% when the temperature-dependence is ignored. In addition to being more accurate, the new method is much faster than those based on the Goody band model.

Abstract

A fast but accurate method for calculating the infrared radiative terms due to water vapor has been developed. It makes use of the behavior in the far wings of absorption lines to scale transmission along an inhomogencous path to an equivalent homogeneous path. Rather than using standard conditions for scaling, the reference temperatures and pressures are chosen in this study to correspond to the-regions where cooling is most significant. This greatly increases the accuracy of the new method. Compared to line-by-line calculations, the new method has errors up to 4% of the maximum cooling rate, while a commonly used method based on the Goody band model (Rodgers and Walshaw, 1966) introduces errors up to 11%. The effect of temperature dependence of transmittance has also been evaluated; the cooling rate errors range up to 11% when the temperature-dependence is ignored. In addition to being more accurate, the new method is much faster than those based on the Goody band model.

Save