Radar Backscattering by Inhomogeneous Precipitation Particles

View More View Less
  • 1 Institute of Atmospheric Physics, The University of Arizona, Tucson 85721
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Calculations of radar backscattering by inhomogeneous precipitation particles require values of the dielectric function of two-component mixtures. Four such dielectric functions are critically examined and their relative merits are weighed. Although apparently different, two are shown to be equivalent: the effective-medium and Polder-van Santen theories. All the dielectric functions agree when the two components are dielectrically similar. All except the Maxwell-Garnet dielectric function are symmetric with respect to interchange of the components. When compared with measurements on ice-air mixtures, the effective-medium and Maxwell-Garnet dielectric functions are marginally better than the Debye function, which has previously been used in backscattering calculations. When the fraction of water is high, the effective-medium function gives calculated values of radar backscattering that are in good agreement with measurements on ice spheres coated with a mixture of ice and water. The Maxwell-Garnet theory, with ice inclusions embedded in a water matrix, is also in good agreement with these measurements, and is so over a wider range of water-volume fractions than the effective-medium theory. Although there are no compelling reasons for preferring one above the other, on the basis of the evidence presented, we would be inclined to use the Maxwell-Garnet dielectric function in radar backscattering calculations.

Abstract

Calculations of radar backscattering by inhomogeneous precipitation particles require values of the dielectric function of two-component mixtures. Four such dielectric functions are critically examined and their relative merits are weighed. Although apparently different, two are shown to be equivalent: the effective-medium and Polder-van Santen theories. All the dielectric functions agree when the two components are dielectrically similar. All except the Maxwell-Garnet dielectric function are symmetric with respect to interchange of the components. When compared with measurements on ice-air mixtures, the effective-medium and Maxwell-Garnet dielectric functions are marginally better than the Debye function, which has previously been used in backscattering calculations. When the fraction of water is high, the effective-medium function gives calculated values of radar backscattering that are in good agreement with measurements on ice spheres coated with a mixture of ice and water. The Maxwell-Garnet theory, with ice inclusions embedded in a water matrix, is also in good agreement with these measurements, and is so over a wider range of water-volume fractions than the effective-medium theory. Although there are no compelling reasons for preferring one above the other, on the basis of the evidence presented, we would be inclined to use the Maxwell-Garnet dielectric function in radar backscattering calculations.

Save