Intermediate Model Solutions to the Lorenz Equations: Strange Attractors and Other Phenomena

Peter R. Gent National Center for Atmospheric Research, Boulder, CO 80307

Search for other papers by Peter R. Gent in
Current site
Google Scholar
PubMed
Close
and
James C. McWilliams National Center for Atmospheric Research, Boulder, CO 80307

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The low-order, nine-component, primitive equation model of Lorenz (1980) is used as the basis for a comparative study of the quality of several intermediate models. All the models are intermediate between the primitive equations and quasi-geostrophy and will not support gravity-wave oscillations; this reduces to three the number of independent components in each. Strange attractors, stable limit cycles, and stable and unstable fixed points are found in the models. They are used to make a quantitative intercomparison of model performance as the forcing strength, or equivalently the Rossby number, is varied. The models can be ranked from best to worst at small Rossby number as follows: the primitive equations, the balance equations, hypogeostrophy, geostrophic momentum approximation, the linear balance equations, and quasi-geostrophy. At intermediate Rossby number the only change in this ranking is the demotion of hypogeostrophy to the position of worst. Caveats about the low-order model, and hence the generality of the conclusions, are also discussed.

Abstract

The low-order, nine-component, primitive equation model of Lorenz (1980) is used as the basis for a comparative study of the quality of several intermediate models. All the models are intermediate between the primitive equations and quasi-geostrophy and will not support gravity-wave oscillations; this reduces to three the number of independent components in each. Strange attractors, stable limit cycles, and stable and unstable fixed points are found in the models. They are used to make a quantitative intercomparison of model performance as the forcing strength, or equivalently the Rossby number, is varied. The models can be ranked from best to worst at small Rossby number as follows: the primitive equations, the balance equations, hypogeostrophy, geostrophic momentum approximation, the linear balance equations, and quasi-geostrophy. At intermediate Rossby number the only change in this ranking is the demotion of hypogeostrophy to the position of worst. Caveats about the low-order model, and hence the generality of the conclusions, are also discussed.

Save