A Global Low-order Spectral General Circulation Model. Part 1: Formulation and Seasonal Climatology

Bette L. Otto-Bliesner Department of Meteorology, University of Wisconsin, Madison 53706

Search for other papers by Bette L. Otto-Bliesner in
Current site
Google Scholar
PubMed
Close
,
Grant W. Branstator National Center for Atmospheric Research, Boulder, CO 80307

Search for other papers by Grant W. Branstator in
Current site
Google Scholar
PubMed
Close
, and
David D. Houghton Department of Meteorology, University of Wisconsin, Madison 53706

Search for other papers by David D. Houghton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A global, spectral, primitive equation model is developed to study the seasonal climatology of the large-scale features of the atmosphere. The model resolution is five equally-spaced sigma levels in the vertical and triangular truncation at wavenumber 10 in the horizontal. Included in the model are: orography; time-varying (but prescribed) sea-surface temperatures, snowcover, and solar declination angle; parameterizations for radiation, convection, condensation, diffusion, and surface transports; and a surface heat budget. The external seasonal forcing of the model atmosphere is composed of sinusoidal time variations in the incoming solar radiation and latitude of the snowline and more complicated variations in the albedo of the snow and the sea-surface temperatures. A five-year seasonal simulation has been analyzed. The model reasonably reproduces the general features of the observed atmospheric circulation, seasonal cycles, interannual variations and hemispheric differences. The success of this low-resolution model in simulating the large-scale features of the atmospheric seasonal cycle illustrates the usefulness of such models for climate studies in conjunction with high-resolution general circulation model simulations.

Abstract

A global, spectral, primitive equation model is developed to study the seasonal climatology of the large-scale features of the atmosphere. The model resolution is five equally-spaced sigma levels in the vertical and triangular truncation at wavenumber 10 in the horizontal. Included in the model are: orography; time-varying (but prescribed) sea-surface temperatures, snowcover, and solar declination angle; parameterizations for radiation, convection, condensation, diffusion, and surface transports; and a surface heat budget. The external seasonal forcing of the model atmosphere is composed of sinusoidal time variations in the incoming solar radiation and latitude of the snowline and more complicated variations in the albedo of the snow and the sea-surface temperatures. A five-year seasonal simulation has been analyzed. The model reasonably reproduces the general features of the observed atmospheric circulation, seasonal cycles, interannual variations and hemispheric differences. The success of this low-resolution model in simulating the large-scale features of the atmospheric seasonal cycle illustrates the usefulness of such models for climate studies in conjunction with high-resolution general circulation model simulations.

Save