An Investigation of a Three-Dimensional Asymmetric Vortex

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, CO 80307
© Get Permissions
Restricted access

Abstract

A three-dimensional numerical simulation is presented for the asymmetric vortex motion which occurs in a Ward-type vortex chamber. The initial state is taken to be one of axisymmetric irrotational flow where the flow enters through the sides at the bottom and exits through the top of the chamber. As tangential velocity is added to the inflowing fluid, the structure of the flow in the meridional plane is modified from a ‘one-celled’ flow(updraft everywhere) to a ‘two-celled’ flow (updraft surrounding a central downdraft). Asymmetric vortices develop in the location of maximum vorticity of the ‘two-celled’ vortex which, it is shown, must be in the gradient between the updraft and the downdraft (but in updraft). Structural features of these asymmetric vortices, such as the tilt with height and propagation rate, are examined. Although the laboratory model upon which the present numerical calculations are based lacks the ability to simulate some important aspects of atmospheric flow, several significant features are shown to resemble the structure of observed tornadoes and mesocyclones.

Abstract

A three-dimensional numerical simulation is presented for the asymmetric vortex motion which occurs in a Ward-type vortex chamber. The initial state is taken to be one of axisymmetric irrotational flow where the flow enters through the sides at the bottom and exits through the top of the chamber. As tangential velocity is added to the inflowing fluid, the structure of the flow in the meridional plane is modified from a ‘one-celled’ flow(updraft everywhere) to a ‘two-celled’ flow (updraft surrounding a central downdraft). Asymmetric vortices develop in the location of maximum vorticity of the ‘two-celled’ vortex which, it is shown, must be in the gradient between the updraft and the downdraft (but in updraft). Structural features of these asymmetric vortices, such as the tilt with height and propagation rate, are examined. Although the laboratory model upon which the present numerical calculations are based lacks the ability to simulate some important aspects of atmospheric flow, several significant features are shown to resemble the structure of observed tornadoes and mesocyclones.

Save