All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 374 23 3
PDF Downloads 33 13 1

Quasi-Stationary Zonally Asymmetric Circulations in the Equatorial Lower Mesosphere

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195
  • | 2 National Center for Atmospheric Research, Boulder, CO 80307
Restricted access

Abstract

Data from the Limb Infrared Monitor of the Stratosphere (LIMS) are used to identify a new type of planetary scale disturbance in the equatorial lower mesosphere during northern winter 1978/79. The disturbances consist of two or three vertically stacked temperature extrema of alternating sign. They persist for as long as two weeks and do not propagate. Their occurrence is confined to regions of very weak or negative inertial stability, and their meridional to vertical aspect ratio, meridional structure and zonal spectrum are consistent with disturbances predicted by inertial instability theory. However, they are found only when there is strong forcing of the subtropical mesosphere by zonal wavenumber one and two Rossby waves. This fact, together with the absence of zonal propagation, suggests that stationary Rossby waves determine their occurrence and longitudinal structure. These structures can significantly modify the zonal mean flow and should be taken into account in dynamical models of the equatorial mesosphere.

Abstract

Data from the Limb Infrared Monitor of the Stratosphere (LIMS) are used to identify a new type of planetary scale disturbance in the equatorial lower mesosphere during northern winter 1978/79. The disturbances consist of two or three vertically stacked temperature extrema of alternating sign. They persist for as long as two weeks and do not propagate. Their occurrence is confined to regions of very weak or negative inertial stability, and their meridional to vertical aspect ratio, meridional structure and zonal spectrum are consistent with disturbances predicted by inertial instability theory. However, they are found only when there is strong forcing of the subtropical mesosphere by zonal wavenumber one and two Rossby waves. This fact, together with the absence of zonal propagation, suggests that stationary Rossby waves determine their occurrence and longitudinal structure. These structures can significantly modify the zonal mean flow and should be taken into account in dynamical models of the equatorial mesosphere.

Save