Another Look at Downslope Winds. Part II: Nonlinear Amplification beneath Wave-Overturning Layers

Dale R. Durran Department of Meteorology, University of Utah, Salt Lake City, UT 84112

Search for other papers by Dale R. Durran in
Current site
Google Scholar
PubMed
Close
and
Joseph B. Klemp National Center for Atmospheric Research, Boulder, CO 80307

Search for other papers by Joseph B. Klemp in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Numerical mountain wave simulations have documented that intense lee-slope winds frequently arise when wave-overturning occurs above the mountain. Explanations for this amplification process have been proposed by Clark and Peltier in terms of a resonance produced by linear-wave reflections from a self-induced critical layer, and by Smith in terms of solutions to Long's equation for flow beneath a stagnant well-mixed layer. In this paper, we evaluate the predictions of these theories through numerical mountain-wave simulations in which the level of wave-overturning is fixed by a critical layer in the mean flow. The response of the simulated flow to changes in the critical-layer height and the mountain height is in good agreement with Smith's theory. A comparison of Smith's solution with shallow-water theory suggests that the strong lee-slope winds associated with wave-overturning are caused by a continuously stratified analog to the transition from subcritical to supercritical flow in conventional hydraulic theory.

Abstract

Numerical mountain wave simulations have documented that intense lee-slope winds frequently arise when wave-overturning occurs above the mountain. Explanations for this amplification process have been proposed by Clark and Peltier in terms of a resonance produced by linear-wave reflections from a self-induced critical layer, and by Smith in terms of solutions to Long's equation for flow beneath a stagnant well-mixed layer. In this paper, we evaluate the predictions of these theories through numerical mountain-wave simulations in which the level of wave-overturning is fixed by a critical layer in the mean flow. The response of the simulated flow to changes in the critical-layer height and the mountain height is in good agreement with Smith's theory. A comparison of Smith's solution with shallow-water theory suggests that the strong lee-slope winds associated with wave-overturning are caused by a continuously stratified analog to the transition from subcritical to supercritical flow in conventional hydraulic theory.

Save