Global QBO in Circulation and Ozone. Part II: A Simple Mechanistic Model

K. K. Tung Department of Applied Mathematics, University of Washington, Seattle, Washington

Search for other papers by K. K. Tung in
Current site
Google Scholar
PubMed
Close
and
H. Yang Department of Applied Mathematics, University of Washington, Seattle, Washington

Search for other papers by H. Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Although the phenomenon of equatorial quasi-biennial oscillation is relatively well understood, the problem of how the equatorially confined QBO wave forcing can induce a signal in the extratroics of comparable or larger magnitude remains unsolved. A simple mechanistic model is constructed to provide a quantitative test of the hypothesis that the phenomenon of extratropical QBO is mainly caused by an anomalous seasonal circulation induced by an anomalous Eliassen-Palm flux divergence. The anomaly in E–P flux divergence may be caused in turn by the relative poleward and downward shift of the region of irreversible mixing (breaking) of the extratropical planetary waves during the easterly phase of the equatorial QBO as compared to its westerly phase. The hemispheric nature of the anomaly wave forcing in solstice seasons (viz., no wave breaking in the summer hemisphere) induces a global circulation anomaly that projects predominantly into the first few zonal Hough modes of Plumb. Such a global QBO circulation pattern, although difficult to measure directly, is reflected in the distribution of stratospheric tracers transported by it. Our model produces a global pattern of QBO anomaly in column ozone that appears to account for much of the unfiltered interannual variability in the column ozone observed by the TOMS instrument aboard the Nimbus satellite. Furthermore, the model produces the characteristic spectrum of the observation with peaks at periods of 20 and 30 months.

Abstract

Although the phenomenon of equatorial quasi-biennial oscillation is relatively well understood, the problem of how the equatorially confined QBO wave forcing can induce a signal in the extratroics of comparable or larger magnitude remains unsolved. A simple mechanistic model is constructed to provide a quantitative test of the hypothesis that the phenomenon of extratropical QBO is mainly caused by an anomalous seasonal circulation induced by an anomalous Eliassen-Palm flux divergence. The anomaly in E–P flux divergence may be caused in turn by the relative poleward and downward shift of the region of irreversible mixing (breaking) of the extratropical planetary waves during the easterly phase of the equatorial QBO as compared to its westerly phase. The hemispheric nature of the anomaly wave forcing in solstice seasons (viz., no wave breaking in the summer hemisphere) induces a global circulation anomaly that projects predominantly into the first few zonal Hough modes of Plumb. Such a global QBO circulation pattern, although difficult to measure directly, is reflected in the distribution of stratospheric tracers transported by it. Our model produces a global pattern of QBO anomaly in column ozone that appears to account for much of the unfiltered interannual variability in the column ozone observed by the TOMS instrument aboard the Nimbus satellite. Furthermore, the model produces the characteristic spectrum of the observation with peaks at periods of 20 and 30 months.

Save