Parameterization of Ice Crystal Conversion Processes Due to Vapor Deposition for Mesoscale Models Using Double-Moment Basis Functions. Part I: Basic Formulation and Parcel Model Results

Jerry Y. Harrington Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Jerry Y. Harrington in
Current site
Google Scholar
PubMed
Close
,
Michael P. Meyers Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Michael P. Meyers in
Current site
Google Scholar
PubMed
Close
,
Robert L. Walko Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Robert L. Walko in
Current site
Google Scholar
PubMed
Close
, and
William R. Cotton Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by William R. Cotton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observational data collected during the FIRE II experiment showing the existence of bimodal ice spectra along with experimental evidence of the size dependence of riming are utilized in the development of a bimodal ice spectrum parameterization for use in the RAMS model. Two ice classes are defined: pristine ice and snow, each described by a separate, complete gamma distribution function. Pristine ice is small ice consisting of particles with mean sizes less than 125 µm, while snow is the large class consisting of particles greater than 125 µm. Analytical equations are formulated for the conversion between the ice classes by vapor depositional growth (sublimation). During ice subsaturated conditions, a number concentration sink is parameterized for all ice species. The performance of the parameterizations in a simple parcel model is discussed and evaluated against an explicit Lagrangian parcel microphysical model.

Abstract

Observational data collected during the FIRE II experiment showing the existence of bimodal ice spectra along with experimental evidence of the size dependence of riming are utilized in the development of a bimodal ice spectrum parameterization for use in the RAMS model. Two ice classes are defined: pristine ice and snow, each described by a separate, complete gamma distribution function. Pristine ice is small ice consisting of particles with mean sizes less than 125 µm, while snow is the large class consisting of particles greater than 125 µm. Analytical equations are formulated for the conversion between the ice classes by vapor depositional growth (sublimation). During ice subsaturated conditions, a number concentration sink is parameterized for all ice species. The performance of the parameterizations in a simple parcel model is discussed and evaluated against an explicit Lagrangian parcel microphysical model.

Save