Eddy Heat Flux Convergence in the Troposphere and Its Effect on the Meridional Circulation and Ozone Distribution

Wookap Choi Global Climate Research Division, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Wookap Choi in
Current site
Google Scholar
PubMed
Close
,
Douglas A. Rotman Global Climate Research Division, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Douglas A. Rotman in
Current site
Google Scholar
PubMed
Close
, and
Donald J. Wuebbles Global Climate Research Division, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Donald J. Wuebbles in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In this study the vertical convergence of the eddy heat flux, found as a forcing term in the thermodynamic energy equation of the transformed Eulerian mean formulation, is estimated in the troposphere and in the lower stratosphere from climatalogical data. Results show that while the heating rates caused by these eddy effects are small in the stratosphere they may play an important role in tropospheric circulation. The eddy-caused additions to the forcing field are seen as a region of significant cooling in the midaltitudes at the midtroposphere level and of weak heating throughout the tropical region. This net global cooling is important in balancing net global heating. In addition, the heating due to meridional heat flux is found to dominate compared to heating due to the vertical heat flux. To study circulation changes, the residual mean circulation is calculated with and without the estimated eddy heating effects. The added forcing causes additional circulation in each hemisphere that coincides with the primary circulation due to zonal-mean diabatic heating. Therefore, the eddy heat flux convergence has a significant role in enhancing the zonal-mean residual circulation in the troposphere.

Abstract

In this study the vertical convergence of the eddy heat flux, found as a forcing term in the thermodynamic energy equation of the transformed Eulerian mean formulation, is estimated in the troposphere and in the lower stratosphere from climatalogical data. Results show that while the heating rates caused by these eddy effects are small in the stratosphere they may play an important role in tropospheric circulation. The eddy-caused additions to the forcing field are seen as a region of significant cooling in the midaltitudes at the midtroposphere level and of weak heating throughout the tropical region. This net global cooling is important in balancing net global heating. In addition, the heating due to meridional heat flux is found to dominate compared to heating due to the vertical heat flux. To study circulation changes, the residual mean circulation is calculated with and without the estimated eddy heating effects. The added forcing causes additional circulation in each hemisphere that coincides with the primary circulation due to zonal-mean diabatic heating. Therefore, the eddy heat flux convergence has a significant role in enhancing the zonal-mean residual circulation in the troposphere.

Save