Parameterizations for Water Vapor IR Radiative Transfer in Both the Middle and Lower Atmospheres

Ming-Dah Chou Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ming-Dah Chou in
Current site
Google Scholar
PubMed
Close
,
William L. Ridgway Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by William L. Ridgway in
Current site
Google Scholar
PubMed
Close
, and
Michael M-H. Yan Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Michael M-H. Yan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Water vapor contributes a maximum of 1°C/day to the middle atmospheric thermal infrared (IR) cooling. This magnitude is small but not negligible. Because of the small amount of mass involved and the extremely narrow molecular absorption lines at pressures less than 1 mb, only a few existing parameterizations can compute accurately the water vapor cooling in this region. The accuracy and efficiency of two IR parameterizations are examined in this study. One is the correlated-k distribution method, and the other is the table look-up using precomputed transmission functions. Both methods can accurately compute the cooling rate from the earth's surface to 0.01 mb with an error of only a few percent. The contribution to the cooling rate at pressures <1 mb comes from a very small fraction (<0.005) of the spectrum near the centers of the absorption bands, where the absorption coefficient varies by four orders of magnitude. It requires at least 100 terms of the k-distribution function to accurately compute the cooling profile. The method of table look-up is, therefore, much faster than the correlated-k distribution method for computing the water vapor cooling profile involving both the middle and lower atmospheres.

Abstract

Water vapor contributes a maximum of 1°C/day to the middle atmospheric thermal infrared (IR) cooling. This magnitude is small but not negligible. Because of the small amount of mass involved and the extremely narrow molecular absorption lines at pressures less than 1 mb, only a few existing parameterizations can compute accurately the water vapor cooling in this region. The accuracy and efficiency of two IR parameterizations are examined in this study. One is the correlated-k distribution method, and the other is the table look-up using precomputed transmission functions. Both methods can accurately compute the cooling rate from the earth's surface to 0.01 mb with an error of only a few percent. The contribution to the cooling rate at pressures <1 mb comes from a very small fraction (<0.005) of the spectrum near the centers of the absorption bands, where the absorption coefficient varies by four orders of magnitude. It requires at least 100 terms of the k-distribution function to accurately compute the cooling profile. The method of table look-up is, therefore, much faster than the correlated-k distribution method for computing the water vapor cooling profile involving both the middle and lower atmospheres.

Save