Selection of Initial Conditions for Ensemble Forecasts in a Simple Perfect Model Framework

Jeffrey L. Anderson Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Jeffrey L. Anderson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An extremely simple chaotic model, the three-variable Lorenz convective model, is used in a perfect model setting to study the selection of initial conditions for ensemble forecasts. Observations with a known distribution of error are sampled from the “climate” of the simple model. Initial condition distributions that use only information about the observation and the observational error distribution (i.e., traditional Monte Carlo methods) are shown to differ from the correct initial condition distributions, which make use of additional information about the local structure of the model's attractor. Three relatively inexpensive algorithms for finding the local attractor structure in a simple model are examined; these make use of singular vectors. normal modes, and perturbed integrations. All of these are related to heuristic algorithms that have been applied to select ensemble members in operational forecast models. The method of perturbed integrations, which is somewhat similar to the “breeding” method used at the National Meteorological Center, is shown to be the most effective in this context. Validating the extension of such methods to realistic models is expected to be extremely difficult; however, it seems reasonable that utilizing all available information about the attractor structure of real forecast models when selecting ensemble initial conditions could improve the success of operational ensemble forecasts.

Abstract

An extremely simple chaotic model, the three-variable Lorenz convective model, is used in a perfect model setting to study the selection of initial conditions for ensemble forecasts. Observations with a known distribution of error are sampled from the “climate” of the simple model. Initial condition distributions that use only information about the observation and the observational error distribution (i.e., traditional Monte Carlo methods) are shown to differ from the correct initial condition distributions, which make use of additional information about the local structure of the model's attractor. Three relatively inexpensive algorithms for finding the local attractor structure in a simple model are examined; these make use of singular vectors. normal modes, and perturbed integrations. All of these are related to heuristic algorithms that have been applied to select ensemble members in operational forecast models. The method of perturbed integrations, which is somewhat similar to the “breeding” method used at the National Meteorological Center, is shown to be the most effective in this context. Validating the extension of such methods to realistic models is expected to be extremely difficult; however, it seems reasonable that utilizing all available information about the attractor structure of real forecast models when selecting ensemble initial conditions could improve the success of operational ensemble forecasts.

Save