The Extratropical 40-Day Oscillation in the UCLA General Circulation Model. Part II: Spatial Structure

S. L. Marcus Space Geodetic Science and Applications Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by S. L. Marcus in
Current site
Google Scholar
PubMed
Close
,
M. Ghil Department of Atmospheric Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by M. Ghil in
Current site
Google Scholar
PubMed
Close
, and
J. O. Dickey Space Geodetic Science and Applications Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by J. O. Dickey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Intraseasonal oscillations in a 3-yr, perpetual-January simulation are examined using a version of the UCLA GCM that produces no self-sustained Madden–Julian oscillation in the Tropics. A robust, 40-day oscillation is found to arise in the model's Northern Hemisphere (NH) extratropics when standard topography is present. Part I of this study addressed the zonally averaged component of the GCM oscillation, manifested in wind- and pressure-induced variations in atmospheric angular momentum (AAM). The focus here is on the spatial features of the oscillation as manifested in the variability of the 500-mb height field.

A standing, wavenumber-two pattern is found in the NH extratropics, which undergoes tilted-trough vacillation in conjunction with the model's AAM oscillation. High (low) values of AAM are associated with low (high) 500-mb heights over the northeast Pacific and Atlantic Oceans; the two centers' of action slightly different frequencies give rise to a long-period modulation (of about 300 days) in the amplitude of the intraseasonal oscillation. Global correlations with the leading empirical orthogonal functions of the NH extratropical 500-mb height field show northeast–southwest teleconnection patterns extending into the Tropics, similar to those found in observational studies. The zonally averaged latent heating in the Tropics exhibits no intraseasonal periodicity, but a 39-day oscillation is found in cumulus precipitation over the western Indian Ocean. The latter shows significant coherence with EOF 1 but is absent in three shorter no-mountain experiments (see Part I), indicating that it may be remotely forced by the intraseasonal oscillation that arises in the model's NH extratropics only in the standard-topography experiment.

Abstract

Intraseasonal oscillations in a 3-yr, perpetual-January simulation are examined using a version of the UCLA GCM that produces no self-sustained Madden–Julian oscillation in the Tropics. A robust, 40-day oscillation is found to arise in the model's Northern Hemisphere (NH) extratropics when standard topography is present. Part I of this study addressed the zonally averaged component of the GCM oscillation, manifested in wind- and pressure-induced variations in atmospheric angular momentum (AAM). The focus here is on the spatial features of the oscillation as manifested in the variability of the 500-mb height field.

A standing, wavenumber-two pattern is found in the NH extratropics, which undergoes tilted-trough vacillation in conjunction with the model's AAM oscillation. High (low) values of AAM are associated with low (high) 500-mb heights over the northeast Pacific and Atlantic Oceans; the two centers' of action slightly different frequencies give rise to a long-period modulation (of about 300 days) in the amplitude of the intraseasonal oscillation. Global correlations with the leading empirical orthogonal functions of the NH extratropical 500-mb height field show northeast–southwest teleconnection patterns extending into the Tropics, similar to those found in observational studies. The zonally averaged latent heating in the Tropics exhibits no intraseasonal periodicity, but a 39-day oscillation is found in cumulus precipitation over the western Indian Ocean. The latter shows significant coherence with EOF 1 but is absent in three shorter no-mountain experiments (see Part I), indicating that it may be remotely forced by the intraseasonal oscillation that arises in the model's NH extratropics only in the standard-topography experiment.

Save