Abstract
Numerical simulations of a gravity current in an environment characterized by complex stratification and vertical wind shear have been performed using a nonhydrostatic, two-dimensional, dry, primitive-equation model. Data from one of the most complete documentations to date of gravity waves associated with a gravity current, presented in an earlier study, are used both to prescribe the gravity current's environment and for validation of the simulated gravity current and its associated gravity waves. These comparisons indicate that the gravity current observed by a Doppler wind profiler and sodars was well simulated in terms of depth, density contrast, and propagation speed and that the model produced a variety of gravity waves similar in many ways to these observed.
Because uncertainties remained concerning the gravity wave generation mechanisms derived from the observations (e.g., wavelengths were not observed), the validated simulations are used to test these tentative hypotheses. The simulations confirm that trapped lee-type gravity waves formed in response to flow over the head of the gravity current and that Kelvin-Helmholtz (KH) waves were created because of shear atop the cold air within the gravity current. The 2.8-km wavelength of the simulated KH waves agrees with the 2- to 3-km wavelength inferred from the observations. However, the 6.4-km wavelength of the simulated lee-type waves is significantly shorter than the 12.5-km wavelength inferred from the observational data, even though wave periods (20-23 minutes) are nearly identical. Sensitivity tests indicate that the curvature in the wind profile associated with the low-level opposing inflow and an elevated isothermal layer worked together to support the development of the trapped lee-type waves. The model produces a deep vertically propagating wave above the gravity current head that was not present in the observations. As deduced in the earlier study, sensitivity tests indicate that the prefrontal, near-surface stable layer was too shallow to support the generation of a bore; that is, conditions were supercritical. Synthesis of detailed observations and numerical simulations of these mesoscale phenomena thus offers the broadest examination possible of the complex physical processes.