Abstract
A narrowband (5 cm−1) radiation transfer scheme has been used to calculate scale-dependent radiative dissipation rates for finite-amplitude temperature disturbances. Eight bands of five atmospheric trace gases have been examined. As previously reported, the CO2 15-µm bands are dominant, and the O3 9.6-µm bands can play a significant role, particularly in the lower stratosphere. The minor bands of CO2 (4.3 and 10.7 µm) are unimportant. Of the other gases considered, H2O (integrated across the longwave spectrum) makes a significant contribution to the dissipation rates in the lower stratosphere. Likewise, the O3 14.3-µm bands contribute to the cooling to space in the lower stratosphere. The 7.66-µm CH4 as well as the 7.78-µm NO2 bands make almost no contribution above the lower stratosphere.