Structure and Evolution of the 22 February 1993 TOGA COARE Squall Line: Aircraft Observations of Precipitation, Circulation, and Surface Energy Fluxes

David P. Jorgensen NOAA/NSSL/Mesoscale Research Division, Boulder, Colorado

Search for other papers by David P. Jorgensen in
Current site
Google Scholar
PubMed
Close
,
Margaret A. LeMone National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Margaret A. LeMone in
Current site
Google Scholar
PubMed
Close
, and
Stanley B. Trier National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Stanley B. Trier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study documents the precipitation and kinematic structure of a mature, eastward propagating, oceanic squall line system observed by instrumented aircraft during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). Doppler radar and low-level in situ observations are used to show the evolution of the convection from an initially linear NNW–SSE-oriented convective line to a highly bow-shaped structure with an embedded low- to midlevel counterclockwise rotating vortex on its northern flank. In addition to previously documented features of squall lines such as highly upshear-tilted convection on its leading edge, a channel of strong front-to-rear flow that ascended with height over a “rear-inflow” that descended toward the convective line, and a pronounced low-level cold pool apparently fed from convective and mesoscale downdrafts from the convective line; rearward, the observations of this system showed distinct multiple maxima in updraft strength with height and reflectivity bands extending rearward transverse to the principal convective line. Vertical motions within the active convective region of the squall line system were determined using a new approach that utilized near-simultaneous observations by the Doppler radars on two aircraft with up to four Doppler radial velocity estimates at echo top. Echo-top vertical motion can then be derived directly, which obviates the traditional dual-Doppler assumption of no vertical velocity at the top boundary and results in a more accurate estimate of tropospheric vertical velocity through downward integration of horizontal divergence.

Low-level flight-level observations of temperature, wind speed, and dew point collected rearward of the squall line are used to estimate bulk fluxes of dry and moist static energy. The strong near-surface fluxes, due to the warm sea and high winds, combined with estimates of mesoscale advection, are used to estimate boundary layer recovery time; they indicate that the boundary layer could recover from the effects of the cold dome within about 3 h of first cold air injection if the observed near-surface winds were maintained. However, the injection and spreading of air from above leads to cooling at a fixed spot ∼20 km rearward of the convective line (surface θe minimum point), suggesting that the cold pool could be still intensifying at the time of observation. Recovery time at a point is probably similar to that measured in previous studies.

Corresponding author address: Dr. David P. Jorgensen, NOAA/NSSL/Mesoscale Research Division, Mail Code: N/C/MRD, 325 Broadway, Boulder, CO 80303.

Abstract

This study documents the precipitation and kinematic structure of a mature, eastward propagating, oceanic squall line system observed by instrumented aircraft during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). Doppler radar and low-level in situ observations are used to show the evolution of the convection from an initially linear NNW–SSE-oriented convective line to a highly bow-shaped structure with an embedded low- to midlevel counterclockwise rotating vortex on its northern flank. In addition to previously documented features of squall lines such as highly upshear-tilted convection on its leading edge, a channel of strong front-to-rear flow that ascended with height over a “rear-inflow” that descended toward the convective line, and a pronounced low-level cold pool apparently fed from convective and mesoscale downdrafts from the convective line; rearward, the observations of this system showed distinct multiple maxima in updraft strength with height and reflectivity bands extending rearward transverse to the principal convective line. Vertical motions within the active convective region of the squall line system were determined using a new approach that utilized near-simultaneous observations by the Doppler radars on two aircraft with up to four Doppler radial velocity estimates at echo top. Echo-top vertical motion can then be derived directly, which obviates the traditional dual-Doppler assumption of no vertical velocity at the top boundary and results in a more accurate estimate of tropospheric vertical velocity through downward integration of horizontal divergence.

Low-level flight-level observations of temperature, wind speed, and dew point collected rearward of the squall line are used to estimate bulk fluxes of dry and moist static energy. The strong near-surface fluxes, due to the warm sea and high winds, combined with estimates of mesoscale advection, are used to estimate boundary layer recovery time; they indicate that the boundary layer could recover from the effects of the cold dome within about 3 h of first cold air injection if the observed near-surface winds were maintained. However, the injection and spreading of air from above leads to cooling at a fixed spot ∼20 km rearward of the convective line (surface θe minimum point), suggesting that the cold pool could be still intensifying at the time of observation. Recovery time at a point is probably similar to that measured in previous studies.

Corresponding author address: Dr. David P. Jorgensen, NOAA/NSSL/Mesoscale Research Division, Mail Code: N/C/MRD, 325 Broadway, Boulder, CO 80303.

Save
  • Barnes, G. M., and K. Sieckman, 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev.,112, 1782–1794.

  • Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev.,119, 104–118.

  • Battan, L. J., 1973: Radar Observations of the Atmosphere. University of Chicago Press, 324 pp.

  • Biggerstaff, M. L., and R. A. Houze Jr., 1991: Kinematics and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev.,119, 3034–3065.

  • ——, and ——, 1993: Kinematics and microphysics of the transition zone of a midlatitude squall-line system. J. Atmos. Sci.,50, 3091–3110.

  • Braun, S. A., and R. A. Houze Jr., 1994: The transition zone and secondary maximum of radar reflectivity behind a midlatitude squall line: Results retrieved from Doppler radar data. J. Atmos. Sci.,51, 2733–2755.

  • Chong, M., P. Amayenc, G. Scialom, and J. Testud, 1987: A tropical squall line observed during the COPT 81 experiment in West Africa. Part I: Kinematic structure inferred from dual-Doppler data. Mon. Wea. Rev.,115, 670–694.

  • Davis, C. A., and M. L. Weisman, 1994: Balanced dynamics of simulated, long-lived mesoscale convective systems. J. Atmos. Sci.,51, 2005–2030.

  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for TOGA COARE. J. Geophys. Res.,101, 3747–3765.

  • Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci.,45, 3846–3879.

  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev.,106, 587–696.

  • ——, and R. A. Kropfli, 1984: Buoyancy and pressure perturbations derived from dual-Doppler radar observations of the planetary boundary layer: Applications for matching models with observations. J. Atmos. Sci., 41, 3007–3020.

  • Hane, C. E., 1993: Storm motion estimates derived from dynamic retrieval calculations. Mon. Wea. Rev.,121, 431–443.

  • ——, and D. P. Jorgensen, 1995: Dynamic aspects of a distinctly three-dimensional mesoscale convective system. Mon. Wea. Rev.,123, 3194–3214.

  • ——, R. B. Wilhelmson, and T. Gal-Chen, 1981: Retrieval of thermodynamic variables within deep convective clouds:Experiments in three dimensions. Mon. Wea. Rev.,109, 564–576.

  • Hauser, D., and P. Amayenc, 1986: Retrieval of cloud water and water vapor contents from Doppler radar data in a tropical squall line. J. Atmos. Sci.,43, 823–838.

  • ——, ——, and M. Chong, 1984: A new optical instrument for simultaneous measurement of raindrop diameter and fallspeed distributions. J. Atmos. Oceanic Technol.,1, 256–269.

  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev.,105, 1540–1567.

  • Jabouille, P., J. L. Redelsperger, and J. P. LaFore, 1996: Modification of surface fluxes by atmospheric convection in the TOGA COARE region. Mon. Wea. Rev.,124, 816–837.

  • Johnson, R. H., and M. E. Nicholls, 1983: A composite analysis of the boundary layer accompanying a tropical squall line. Mon. Wea. Rev.,111, 308–319.

  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci.,46, 621–640.

  • ——, and B. F. Smull, 1993: Mesovortex circulations seen by airborne Doppler radar within a bow-echo mesoscale convective system. Bull. Amer. Meteor. Soc.,74, 2146–2157.

  • ——, P. H. Hildebrand, and C. L. Frush, 1983: Feasibility test of an airborne pulse-Doppler meteorological radar. J. Climate Appl. Meteor.,22, 744–757.

  • ——, M. A. LeMone, and B. J.-D. Jou, 1991: Precipitation and kinematic structure of an oceanic mesoscale convective system. Part I: Analysis of airborne Doppler radar data. Mon. Wea. Rev.,119, 2608–2637.

  • ——, T. Matejka, and J. D. DuGranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. J. Meteor. Atmos. Phys.,59, 83–104.

  • Keenan, T. D., and R. E. Carbone, 1992: A preliminary morphology of precipitation systems in northern Australia. Quart. J. Roy. Meteor. Soc.,118, 283–326.

  • Leise, J. A., 1981: A multidimensional scale-telescoped filter and data extension package. NOAA Tech. Memo. ERL WPL-82, 18 pp. [NTIS PB82-164104.].

  • LeMone, M. A., and D. P. Jorgensen, 1991: Precipitation and kinematic structure of an oceanic mesoscale convective system. Part II: Momentum transport and generation. Mon. Wea. Rev.,119, 2638–2653.

  • ——, G. M. Barnes, E. J. Szoke, and E. J. Zipser, 1984a: The tilt of the leading edge of mesoscale tropical convective lines. Mon. Wea. Rev.,112, 510–519.

  • ——, ——, and E. J. Zipser, 1984b: Momentum flux by lines of cumulonimbus over the tropical oceans. J. Atmos. Sci.,41, 1914–1932.

  • Matejka, T., and S. A. Lewis, 1997: Improving research aircraft navigation by incorporating INS and GPS information in a variational solution. J. Atmos. Oceanic Technol.,14, 495–511.

  • O’Brien, J. J., 1970: Alternative solutions to the classical vertical velocity problem. J. Appl. Meteor.,9, 197–203.

  • Ogura, Y., and M.-T. Liou, 1980: The structure of a midlatitude squall line. A case study. J. Atmos. Sci.,37, 553–567.

  • Parsons,D., and Coauthors, 1994: The integrated sounding system: Description and preliminary observations from TOGA COARE. Bull. Amer. Meteor. Soc.,75, 553–567.

  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136–151.

  • Roux, F., 1988: The West African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci.,45, 406–426.

  • Rutledge, S. A., R. A. Houze Jr., M. I. Biggerstaff, and T. J. Matejka, 1988: The Oklahoma–Kansas mesoscale convective system of 10–11 June 1985: Precipitation structure and single-Doppler radar analysis. Mon. Wea. Rev.,116, 1409–1430.

  • Schmidt, J. M., and W. R. Cotton, 1989: A high plains squall line associated with severe surface winds. J. Atmos. Sci.,46, 281–302.

  • Scott, J. D., and S. A. Rutledge, 1995: Doppler radar observations of an asymmetric mesoscale convective system and associated vortex couplet. Mon. Wea. Rev.,123, 3437–3457.

  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci.,51, 2563–2584.

  • Smull, B. F., and R. A. Houze Jr., 1987: Dual-Doppler radar analysis of a midlatitude squall line with a trailing region of stratiform rain. J. Atmos. Sci.,44, 2128–2148.

  • Sun, J., and R. A. Houze Jr., 1992: Validation of a thermodynamic retrieval technique by application to a simulated squall line with trailing stratiform precipitation. Mon. Wea. Rev.,120, 1003–1018.

  • Szoke, E. J., E. J. Zipser, and D. P. Jorgensen, 1986: A radar study of convective cells in mesoscale systems in GATE. Part I: Vertical profile statistics and comparison with hurricanes. J. Atmos. Sci.,43, 182–197.

  • Trier, S. B., W. C. Skamarock, M. A. LeMone, D. B. Parsons, and D. P. Jorgensen, 1996: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Numerical simulations. J. Atmos. Sci.,53, 2861–2886.

  • ——, ——, and ——, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Organization mechanisms inferred from numerical simulation. J. Atmos. Sci.,54, 386–407.

  • Verlinde, J., and W. R. Cotton, 1990: A mesoscale vortex couplet observed in the trailing anvil of a multicellular convective complex. Mon. Wea. Rev.,118, 993–1010.

  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc.,73, 1377–1416.

  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci.,50, 645–670.

  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev.,123, 1941–1963.

  • ——, ——, B. F. Smull, F. D. Marks, and J. R. Daugherty, 1995: TOGA COARE aircraft mission summary images: An electronic atlas. Bull. Amer. Meteor. Soc.,76, 319–328.

  • Zhang, D.-L., K. Gao, and D. B. Parsons, 1989: Numerical simulations of anintense squall line during 10–11 June 1985 PRE-STORM. Part I: Model verification. Mon. Wea. Rev.,117, 960–994.

  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev.,105, 1568–1589.

  • ——, and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci.,37, 2458–2469.

  • ——, and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev.,122, 1751–1759.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 618 374 23
PDF Downloads 232 52 4