Influence of Wave Propagation on the Doppler Spreading of Atmospheric Gravity Waves

Stephen D. Eckermann Computational Physics, Inc., Fairfax, Virginia

Search for other papers by Stephen D. Eckermann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The “Doppler spread” theory of atmospheric gravity waves has developed rapidly in recent years, from an initial theory of wave spectra into a general parameterization of gravity wave effects for use in global models of the middle atmosphere. Yet the theory currently employs certain key approximations that have still to be tested. The author focuses on the omission of the propagation of the other waves in the spectrum when determining the Doppler spreading of a given gravity wave. This approximation is shown to become untenable as waves are refracted to progressively shorter vertical scales, so ray methods are employed to investigate the refraction characteristics of short waves within propagating long-wave fields. Short-wave refraction is reduced compared to the Doppler-spread results. While turning levels are common, critical levels do not occur if all waves propagate upward in the absence of mean wind shear. Consequently, a sharp increase in the probability of wave obliteration beyond the so-called cutoff vertical wavenumber (a central tenet of Doppler-spread theory) no longer occurs. Possible implications of these results for models of wave–field interactions, spectra, and momentum deposition are discussed.

* Work performed at E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C.

Corresponding author address: Stephen Eckermann, E. O. Hulburt Center for Space Research, Code 7641, Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, DC, 20375-5320.

Abstract

The “Doppler spread” theory of atmospheric gravity waves has developed rapidly in recent years, from an initial theory of wave spectra into a general parameterization of gravity wave effects for use in global models of the middle atmosphere. Yet the theory currently employs certain key approximations that have still to be tested. The author focuses on the omission of the propagation of the other waves in the spectrum when determining the Doppler spreading of a given gravity wave. This approximation is shown to become untenable as waves are refracted to progressively shorter vertical scales, so ray methods are employed to investigate the refraction characteristics of short waves within propagating long-wave fields. Short-wave refraction is reduced compared to the Doppler-spread results. While turning levels are common, critical levels do not occur if all waves propagate upward in the absence of mean wind shear. Consequently, a sharp increase in the probability of wave obliteration beyond the so-called cutoff vertical wavenumber (a central tenet of Doppler-spread theory) no longer occurs. Possible implications of these results for models of wave–field interactions, spectra, and momentum deposition are discussed.

* Work performed at E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C.

Corresponding author address: Stephen Eckermann, E. O. Hulburt Center for Space Research, Code 7641, Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, DC, 20375-5320.

Save
  • Allen, K. R., and R. I. Joseph, 1989: A canonical statistical theory of oceanic internal waves. J. Fluid Mech.,204, 185–228.

  • Allen, S. J., and R. A. Vincent, 1995: Gravity-wave activity in the lower atmosphere: Seasonal and latitudinal variations. J. Geophys. Res.,100, 1327–1350.

  • Andrews, D. G., and M. E. McIntyre, 1978: On wave-action and its relatives. J. Fluid Mech.,89, 647–664.

  • Bacmeister, J. T., S. D. Eckermann, P. A. Newman, L. Lait, K. R. Chan, M. Loewenstein, M. H. Profitt, and B. L. Gary, 1996: Stratospheric horizontal wavenumber spectra of winds, potential temperature and atmospheric tracers observed by high-altitude aircraft. J. Geophys. Res.,101, 9441–9470.

  • Benielli, D., and J. Sommeria, 1996: Excitation of internal waves and stratified turbulence by parametric instability. Dyn. Atmos. Oceans,23, 335–343.

  • Bouruet-Aubertot, P., J. Sommeria, and C. Staquet, 1996: Stratified turbulence produced by internal wave breaking: Two-dimensional numerical experiments. Dyn. Atmos. Oceans,23, 357–369.

  • Broutman, D., 1984: The focusing of short internal waves by an inertial wave. Geophys. Astrophys. Fluid Dyn.,30, 199–225.

  • ——, 1986: On internal wave caustics. J. Phys. Oceanogr.,16, 1625–1635.

  • ——, and W. R. Young, 1986: On the interaction of small-scale internal waves with near-inertial waves. J. Fluid Mech.,166, 341–358.

  • ——, C. Macaskill, M. E. McIntyre, and J. W. Rottman, 1997: On Doppler-spreading models of internal waves. Preprints, 11th Conf. on Atmospheric and Oceanic Fluid Dynamics, Tacoma, WA, Amer. Meteor. Soc., 304–308.

  • Bruhwiler, D. L., and T. J. Kaper, 1995: Wavenumber transport: Scattering of small-scale internal waves by large-scale wavepackets. J. Fluid Mech.,289, 379–405.

  • Chunchuzov, I. P., 1996: The spectrum of high-frequency internal waves in the atmospheric waveguide. J. Atmos. Sci.,53, 1798–1814.

  • D’Asaro, E. A., and M. D. Morehead, 1991: Internal waves and velocity fine structure in the Arctic Ocean. J. Geophys. Res.,96, 12725–12738.

  • Desaubies, Y., and W. K. Smith, 1982: Statistics of Richardson number and instability in oceanic internal waves. J. Phys. Oceanogr.,12, 1245–1259.

  • Dewan, E. M., 1991: Similitude modeling of internal gravity wave spectra. Geophys. Res. Lett.,18, 1473–1476.

  • ——, and R. E. Good, 1986: Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J. Geophys. Res.,91, 2742–2748.

  • Eckermann, S. D., 1992: Ray-tracing simulation of the global propagation of inertia gravity waves through the zonally-averaged middle atmosphere. J. Geophys. Res.,97, 15849–15866.

  • ——, 1995: Effect of background winds on vertical wavenumber spectra of atmospheric gravity waves. J. Geophys. Res.,100, 14097–14112.

  • ——, and C. J. Marks, 1996: An idealized ray model of gravity wave–tidal interactions. J. Geophys. Res.,101, 21195–21212.

  • ——, I. Hirota, and W. K. Hocking, 1995: Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. Quart. J. Roy. Meteor. Soc.,121, 149–186.

  • Einaudi, F., and C. O. Hines, 1970: WKB approximation in application to acoustic-gravity waves. Can. J. Phys.,48, 1458–1471.

  • Flatté, S. M., F. S. Henyey, and J. A. Wright, 1985: Eikonal calculations of short-wavelength internal-wave spectra. J. Geophys. Res.,90, 7265–7272.

  • Frederiksen, J. S., and R. C. Bell, 1984: Energy and entropy evolution of interacting gravity waves and turbulence. Geophys. Astrophys. Fluid Dyn.,28, 171–203.

  • Fritts, D. C., and T. E. VanZandt, 1987: Effects of Doppler shifting on the frequency spectra of atmospheric gravity waves. J. Geophys. Res.,92, 9723–9732.

  • ——, and L. Yuan, 1989: An analysis of gravity wave ducting in the atmosphere: Eckart’s resonances in thermal and Doppler ducts. J. Geophys. Res.,94, 18455–18466.

  • ——, and W. Lu, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part II: Parameterization of wave forcing and variability. J. Atmos. Sci.,50, 3695–3713.

  • ——, J. F. Garten, and Ø. Andreassen, 1996: Wave breaking and transition to turbulence in stratified shear flows. J. Atmos. Sci.,53, 1057–1085.

  • Gardner, C. S., 1994: Diffusive filtering theory of gravity wave spectra in the atmosphere. J. Geophys. Res.,99, 20601–20622.

  • ——, C. A. Hostetler, and S. Lintelman, 1993: Influence of the mean wind field on the separability of atmospheric perturbation spectra. J. Geophys. Res.,98, 8859–8872.

  • Gossard, E. E., and W. H. Hooke, 1975: Waves in the Atmosphere. Elsevier Science, 456 pp.

  • Grimshaw, R., 1984: Wave action and wave-mean flow interaction, with applications to stratified shear flows. Annu. Rev. Fluid Mech.,16, 11–44.

  • Henyey, F. S., and N. Pomphrey, 1983: Eikonal description of internal wave interactions: A non diffusive picture of “induced diffusion.” Dyn. Atmos. Oceans,7, 189–219.

  • ——, J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res.,91, 8487–8495.

  • Hibiya, T., Y. Niwa, K. Nakajima, and N. Suginohara, 1996: Direct numerical simulation of the roll-off range of internal wave shear spectra in the ocean. J. Geophys. Res.,101, 14123–14129.

  • Hines, C. O., 1991a: The saturation of gravity waves in the middle atmosphere. Part I: Critique of linear-instability theory. J. Atmos. Sci.,48, 1348–1359.

  • ——, 1991b: The saturation of gravity waves in the middle atmosphere. Part II: Development of Doppler-spread theory. J. Atmos. Sci.,48, 1360–1379.

  • ——, 1991c: The saturation of gravity waves in the middle atmosphere. Part III: Formation of the turbopause and of the turbulent layers beneath it. J. Atmos. Sci.,48, 1380–1385.

  • ——, 1993a: Pseudosaturation of gravity waves in the middle atmosphere: An interpretation of certain lidar observations. J. Atmos. Terr. Phys.,55, 441–445.

  • ——, 1993b: The saturation of gravity waves in the middle atmosphere. Part IV: Cutoff of the incident wave spectrum. J. Atmos. Sci.,50, 3045–3060.

  • ——, 1996: Nonlinearity of gravity wave saturated spectra in the middle atmosphere. Geophys. Res. Lett.,23, 3309–3312.

  • ——, 1997a: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Terr. Phys.,59, 371–386.

  • ——, 1997b: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad spectra and quasi monochromatic waves, and implementation. J. Atmos. Terr. Phys.,59, 387–400.

  • ——, 1997c: Nonlinearity of the saturation spectrum. Gravity Wave Processes: Their Parameterization in Global Models, K. Hamilton, Ed., NATO ASI Series, Vol. I 50, Springer-Verlag, 227–244.

  • Hirota, I., and T. Niki, 1985: A statistical study of inertia-gravity waves in the middle atmosphere. J. Meteor. Soc. Japan,63, 1055–1066.

  • Holloway, G., 1980: Oceanic internal waves are not weak waves. J. Phys. Oceanogr.,10, 906–914.

  • Huang, C. M., F. S. Kuo, H. Y. Lue, and C. H. Liu, 1992: Numerical simulations of the saturated gravity wave spectra in the atmosphere. J. Atmos. Terr. Phys.,54, 129–142.

  • Jones, W. L., 1967: Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech.,30, 439–448.

  • ——, 1969: Ray tracing for internal gravity waves. J. Geophys. Res.,74, 2028–2033.

  • Lawrence, B. N., 1997: The effect of parameterized gravity wave drag on simulations of the middle atmosphere during northern winter 1991/92—General evolution. Gravity Wave Processes: Their Parameterization in Global Models, K. Hamilton, Ed., NATO ASI Series, Vol. I 50, Springer-Verlag, 291–307.

  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res.,86, 9707–9714.

  • Manzini, E., N. A. McFarlane, and C. McLandress, 1997: Middle atmosphere simulations with the ECHAM4 model: Sensitivity to the Doppler-spread parameterization. Gravity Wave Processes: Their Parameterization in Global Models, K. Hamilton, Ed., NATO ASI Series, Vol. I 50, Springer-Verlag, 367–381.

  • Marks, C. J., and S. D. Eckermann, 1995: A three-dimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary results for the middle atmosphere. J. Atmos. Sci.,52, 1959–1984.

  • McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction of oceanic internal waves. J. Geophys. Res.,82, 1397–1412.

  • Medvedev, A. S., and G. P. Klaassen, 1995: Vertical evolution of gravity wave spectra and the parameterization of associated wave drag. J. Geophys. Res.,100, 25841–25853.

  • Mengel, J. H., H. G. Mayr, K. L. Chan, C. O. Hines, C. A. Reddy, N. F. Arnold, and S. F. Porter, 1995: Equatorial oscillations in the middle atmosphere generated by small-scale gravity waves. Geophys. Res. Lett.,22, 3027–3030.

  • Müller, P., G. Holloway, F. S. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys.,24, 493–536.

  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., The MIT Press, 264–291.

  • Orlanski, I., and C. P. Cerasoli, 1981: Energy transfer among internal gravity modes: Weak and strong interactions. J. Geophys. Res.,86, 4103–4124.

  • Schoeberl, M. R., 1985: A ray-tracing model of gravity wave propagation and breakdown in the middle atmosphere. J. Geophys. Res.,90, 7999–8010.

  • Shen, C. Y., and G. Holloway, 1986: A numerical study of the frequency and the energetics of nonlinear internal gravity waves. J. Geophys. Res.,91, 953–973.

  • Sherman, J. T., and R. Pinkel, 1991: Estimates of the vertical wavenumber-frequency spectra of vertical shear and strain. J. Phys. Oceanogr.,21, 292–303.

  • Smith, S. A., D. C. Fritts, and T. E. VanZandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci.,44, 1404–1410.

  • Sonmor, L. J., and G. P. Klaassen, 1996: Higher-order resonant instabilities of internal gravity waves. J. Fluid Mech.,324, 1–23.

  • Thorpe, S. A., 1989: The distortion of short internal waves produced by a long wave, with application to ocean boundary mixing. J. Fluid Mech.,208, 395–415.

  • Tsuda, T., T. E. VanZandt, M. Mizumoto, S. Kato, and S. Fukao, 1991: Spectral analysis of temperature and Brunt–Väisälä frequency fluctuations observed by radiosondes. J. Geophys. Res.,96, 17265–17278.

  • Weinstock, J., 1990: Saturated and unsaturated spectra of gravity waves, and scale-dependent diffusion. J. Atmos. Sci.,47, 2211–2225.

  • Zhong, L., L. J. Sonmor, A. H. Manson, and C. E. Meek, 1995: The influence of time-dependent wind on gravity-wave propagation in the middle atmosphere. Ann. Geophys.,13, 375–394.

  • Zhu, X., 1994: A new theory of the saturated gravity wave spectrum for the middle atmosphere. J. Atmos. Sci.,51, 3615–3626.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 710 391 46
PDF Downloads 115 45 2