A Set of Zonal Mean Equations in a Pressure–Isentrope Hybrid Vertical Coordinate

Toshiki Iwasaki Numerical Prediction Division, Japan Meteorological Agency, Tokyo, Japan

Search for other papers by Toshiki Iwasaki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A set of mass-weighted zonal mean equations in a pressure–isentrope hybrid vertical coordinate is derived. This formulation is able to present the nonacceleration theorem in ageostrophic and finite-amplitude sense.

* Current affiliation: Geophysical Institute, Graduate School of Science, Tohoku University, Sendai, Japan.

Corresponding author information: Dr. Toshiki Iwasaki, Geophysical Institute, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.

Email: iwasaki@wind.geophys.tohoku.ac.jp

Abstract

A set of mass-weighted zonal mean equations in a pressure–isentrope hybrid vertical coordinate is derived. This formulation is able to present the nonacceleration theorem in ageostrophic and finite-amplitude sense.

* Current affiliation: Geophysical Institute, Graduate School of Science, Tohoku University, Sendai, Japan.

Corresponding author information: Dr. Toshiki Iwasaki, Geophysical Institute, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.

Email: iwasaki@wind.geophys.tohoku.ac.jp

Save
  • Andrews, D. G., 1980: On the mean-motion induced by transient inertia-gravity waves. Pure Appl. Geophys.,118, 177–188.

  • ——, 1983: A finite-amplitude Eliassen–Palm theorem in isentropic coordinates. J. Atmos. Sci.,40, 1877–1883.

  • ——, and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci.,33, 2031–2048.

  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci.,37, 2600–2616.

  • Egger, J., 1996: Comments on “On the ‘downward control’ of extratropical diabatic circulations by eddy-induced mean zonal forces.” J. Atmos. Sci.,53, 2103–2104.

  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of the extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci.,48, 651–678.

  • Iwasaki, T., 1989: A diagnostic formulation for wave-mean flow interactions and Lagrangian-mean circulation with a hybrid vertical coordinate of pressure and isentropes. J. Meteor. Soc. Japan,67, 293–312.

  • ——, 1990: Lagrangian-mean circulation and wave-mean flow interaction of Eady’s baroclinic instability waves. J. Meteor. Soc. Japan,68, 347–356.

  • ——, 1992: General circulation diagnosis in a pressure-isentrope hybrid vertical coordinate. J. Meteor. Soc. Japan,70, 673–687.

  • Matsuno, T., 1980: Lagrangian motion of air parcels in the presence of planetary waves. Pure Appl. Geophys.,118, 189–216.

  • McIntyre, M. E., 1980: An introduction to generalized Lagragian mean description of wave, mean-flow interaction. Pure Appl. Geophys.,118, 152–176.

  • Rosenlof, K. H., and J. R. Holton, 1993: Estimates of the stratospheric residual circulation using the downward control. J. Geophys. Res.,98, 10 777–10 798.

  • Shine, K., 1989: Sources and sinks of zonal momentum in the middle atmosphere diagnosed using the diabatic circulation. Quart. J. Roy. Meteor. Soc.,115, 265–289.

  • Tung, K. K., 1986: Nongeostrophic theory of zonally averaged circulation. Part I: Formulation. J. Atmos. Sci.,43, 2600–2618.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 61 3
PDF Downloads 62 27 1