• Battan, L. J., 1958: Energy of a dust devil. J. Meteor.,15, 235–237.

  • Brunt, D., 1941: Physical and Dynamical Meteorology. Cambridge University Press, 428 pp.

  • Carroll, J. J., and J. A. Ryan, 1970: Atmospheric vorticity and dust devil rotation. J. Geophys. Res.,20, 5179–5184.

  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci.,41, 2991–3006.

  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci.,27, 1211–1212.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci.,43, 585–604.

  • Fiedler, B. H., and R. Rotunno, 1986: A theory for the maximum windspeed in tornado-like vortices. J. Atmos. Sci.,43, 2328–2340.

  • Flower, W. D., 1936: Sand devils. U.K. Meteorological Office Tech. Note 5, No. 71, 16 pp.

  • Georgii, W., 1952: The meteorological basis of soaring. U.S. Naval Ordinance Test Station Tech. Memo. NOTS TM-258, 122 pp.

  • Grant, C. C., 1949: Dust devils in the subartic. Weather,4, 402–403.

  • Haltiner, G. J., and F. L. Martin, 1957: Dynamical and Physical Meteorology. McGraw-Hill, 470 pp.

  • Ives, R. L., 1947: Behavior of dust devils. Bull. Amer. Meteor. Soc.,28, 168–174.

  • Kaimal, J. C., and J. A. Businger, 1970: Case studies of a convective plume and a dust devil. J. Appl. Meteor.,9, 612–620.

  • Lilly, D. K., 1982: The development and maintenance of rotation in convective storms. Intense Atmospherics Vortices: Topics in Atmospheric and Oceanographic Sciences, Springer-Verlag, 149–160.

  • Rennó, N. O., and A. P. Ingersoll, 1996: Natural convection as a heat engine: A theory for CAPE. J. Atmos. Sci.,53, 572–585.

  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorm. J. Atmos. Sci.,42, 271–292.

  • Ryan, J. A., and J. J. Carroll, 1970: Dust devil wind velocities: Mature state. J. Geophys. Res.,75, 531–541.

  • Sellers, W. D., 1965: Physical Climatology. University of Chicago Press, 272 pp.

  • Simpson, J., B. R. Morton, M. C. McCumber, and R. S. Penc, 1986:Observations and mechanisms of GATE waterspouts. J. Atmos. Sci.,43, 753–782.

  • Sinclair, P. C., 1966: A quantitative analysis of the dust devil. Ph.D. dissertation, The University of Arizona, 292 pp.

  • ——, 1969: General characteristics of dust devils. J. Appl. Meteor.,8, 32–45.

  • ——, 1973: The lower structure of dust devils. J. Atmos. Sci.,30, 1599–1619.

  • Wegener, A., 1914: Staubwirbel auf Island. Meteor. Z.,31, 199 pp.

  • Williams, N. R., 1948: Development of dust and similar scale vortices. Bull. Amer. Meteor. Soc.,29, 106–117.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 345 345 31
PDF Downloads 167 167 17

A Simple Thermodynamical Theory for Dust Devils

View More View Less
  • 1 Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Based on the heat engine framework, a simple scaling theory for dust devils is proposed and compared to observations. This theory provides a simple physical interpretation for many of the observed characteristics of dust devils. In particular, it predicts the potential intensity and the diurnal variation of dust devil occurrence. It also predicts that the intensity of dust devils depends on the product of two thermodynamic efficiencies, corresponding respectively to vertical and horizontal temperature gradients.

Corresponding author address: Dr. Nilton O. Rennó, Department of Atmospheric Sciences, The University of Arizona, P.O. Box 210081, Tucson, AZ 85721-0081.

Email: renno@soar.atmo.arizona.edu

Abstract

Based on the heat engine framework, a simple scaling theory for dust devils is proposed and compared to observations. This theory provides a simple physical interpretation for many of the observed characteristics of dust devils. In particular, it predicts the potential intensity and the diurnal variation of dust devil occurrence. It also predicts that the intensity of dust devils depends on the product of two thermodynamic efficiencies, corresponding respectively to vertical and horizontal temperature gradients.

Corresponding author address: Dr. Nilton O. Rennó, Department of Atmospheric Sciences, The University of Arizona, P.O. Box 210081, Tucson, AZ 85721-0081.

Email: renno@soar.atmo.arizona.edu

Save