• Abramowitz, M., and I. A. Stegun, 1965: Handbook of Mathematical Functions. Dover Publications, 1046 pp.

  • Appleman, H., 1953: The formation of exhaust condensation trails by jet aircraft. Bull. Amer. Meteor. Soc.,34, 14–20.

  • DeMott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds. J. Atmos. Sci.,51, 77–90.

  • Ebert, E. E., and J. A. Curry, 1992: A parameterization of ice cloud optical properties for climate models. J. Geophys. Res.,97, 3831–3836.

  • Foster, T. C., and J. Hallett, 1993: Ice crystals produced by expansion:Experiment and application to aircraft-produced ice. J. Appl. Meteor.,32, 716–728.

  • Gayet, J. F., G. Febvre, G. Brogniez, H. Chepfer, W. Renger, and P. Wendling, 1996: Microphysical and optical properties of cirrus and contrails: Cloud field study on 13 October 1989. J. Atmos. Sci.,53, 126–138.

  • Gierens, K. M., 1996: Numerical simulations of persistent contrails. J. Atmos. Sci.,53, 3333–3348.

  • Heymsfield, A. J., and L. M. Miloshevich, 1993: Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos. Sci.,50, 2335–2353.

  • ——, and ——, 1995: Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II. J. Atmos. Sci.,52, 4302–4326.

  • Höller, H., 1986: Parameterization of cloud-microphysical processes in a three-dimensional convective mesoscale model. DFVLR Forschungsbericht 86-02, 82 pp. [Available from Deutsche Forschungsanstalt für Luft- und Raumfahrt, D-51140 Köln, Germany.].

  • Kajikawa, M., and A. J. Heymsfield, 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci.,46, 3108–3121.

  • Kärcher, B., T. Peter, U. M. Biermann, and U. Schumann, 1996: The initial composition of jet condensation trails. J. Atmos. Sci.,53, 3066–3083.

  • Knollenberg, R. G., 1972: Measurements of the growth of the ice budget in a persisting contrail. J. Atmos. Sci.,29, 1367–1374.

  • Koenig, L. R., 1971: Numerical modelling of ice deposition. J. Atmos. Sci.,28, 226–237.

  • Lin, H., K. J. Noone, J. Ström, and A. J. Heymsfield, 1998: Small ice crystals in cirrus clouds: A model study and comparison with in situ observations. J. Atmos. Sci.,55, 1928–1939.

  • Noone, K. J., J. A. Ogren, J. Heintzenberg, R. J. Charlson, and D. S. Covert, 1988: Design and calibration of a counterflow virtualimpactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Technol.,8, 235–244.

  • Ponater, M., S. Brinkop, R. Sausen, and U. Schumann, 1996: Simulating the global atmospheric response to aircraft water vapour emissions and contrails—a first approach using a GCM. Ann. Geophys.,14, 941–960.

  • Rangno, A. L., and P. V. Hobbs, 1983: Production of ice particles in clouds due to aircraft penetration. J. Climate Appl. Meteor.,22, 214–232.

  • Rogers, R. R., 1979: A Short Course in Cloud Physics. 2d ed. Pergamon Press, 235 pp.

  • Sassen, K., 1991: Aircraft-produced ice particles in a highly supercooled altocumulus cloud. J. Appl. Meteor.,30, 765–775.

  • ——, and G. C. Dodd, 1989: Haze particle nucleation simulation in cirrus clouds and applications for numerical and lidar studies. J. Atmos. Sci.,46, 3005–3014.

  • Schumann, U., 1996: On conditions for contrail formation from aircraft exhausts. Meteor. Z., N. F.,5, 4–23.

  • ——, and P. Wendling, 1990: Determination of contrails from satellite data and observational results. Air Traffic and the Environment, U. Schumann, Ed., Springer-Verlag, 138–153.

  • ——, T. Hauf, H. Höller, H. Schmidt, and H. Volkert, 1987: A mesoscale model for simulation of turbulence, clouds and flow over mountains: Formulation and validation examples. Beitr. Phys. Atmos.,60, 413–446.

  • Starr, D. O., and S. Cox, 1985: Cirrus clouds. Part I: A cirrus cloud model. J. Atmos. Sci.,42, 2663–2681.

  • Stephens, G. L., S. Tsay, P. W. Stackhouse, and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci.,47, 1742–1753.

  • Ström, J., F. Schröder, J. Heintzenberg, T. Anderson, P. Wendling, and B. Strauss, 1994: Recent measurements in cirrus clouds and contrails using the MISU CVI-payload during ICE94. 7th EUCREX-2 Workshop, Lille, France, Université des Sciences et Technologies de Lille, 83–85. [Available from Dr. J. Ström, Dept. of Meteorology, Stockholm University, S-10691 Stockholm, Sweden.].

  • ——, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, and P. Wendling, 1997: In situ observations of the microphysical properties of young cirrus clouds. J. Atmos. Sci.,54, 2542–2553.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 169 169 1
PDF Downloads 41 41 0

A Numerical Study of Aircraft Wake Induced Ice Cloud Formation

View More View Less
  • 1 DLR Oberpfaffenhofen, Institut für Physik der Atmosphäre, Weßling, Germany
  • | 2 Meteorologiska Institutionen, Stockholms Universitet, Stockholm, Sweden
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Numerical simulations of ice cloud formation in the wake of an aircraft flying at cruise altitude have been performed. The engine exhaust has been excluded from the simulations in order to study cloud formation due solely to aerodynamic effects. The ice is formed via homogeneous freezing nucleation of ambient haze droplets in the upwelling limbs of the vortex pair behind the aircraft. Properties of wake ice clouds are compared with properties of contrails obtained with in situ measurements and recent simulations. In particular, the authors find that aerodynamically induced ice clouds are similar in microphysical and radiative respects to contrails that are formed from the nucleation of exhaust particles. This means that under cold and moist conditions contrails as young as 2–5 min may consist of similar amounts of aerodynamically produced and exhaust triggered ice crystals.

Corresponding author address: Dr. Klaus M. Gierens, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Postfach 1116, D-82230 Weßling, Germany.

Email: klaus.gierens@dlr.de

Abstract

Numerical simulations of ice cloud formation in the wake of an aircraft flying at cruise altitude have been performed. The engine exhaust has been excluded from the simulations in order to study cloud formation due solely to aerodynamic effects. The ice is formed via homogeneous freezing nucleation of ambient haze droplets in the upwelling limbs of the vortex pair behind the aircraft. Properties of wake ice clouds are compared with properties of contrails obtained with in situ measurements and recent simulations. In particular, the authors find that aerodynamically induced ice clouds are similar in microphysical and radiative respects to contrails that are formed from the nucleation of exhaust particles. This means that under cold and moist conditions contrails as young as 2–5 min may consist of similar amounts of aerodynamically produced and exhaust triggered ice crystals.

Corresponding author address: Dr. Klaus M. Gierens, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Postfach 1116, D-82230 Weßling, Germany.

Email: klaus.gierens@dlr.de

Save