Abstract
The influence of large-scale advective cooling and/or moistening on the quasi-equilibrium behavior of simulated, tropical oceanic cumulus ensembles is examined in this study. Two sensitivity simulations are performed by imposing time varying/invariant large-scale advective cooling effects and time invariant/varying large-scale advective moistening effects. The results are compared with a control simulation performed with both large-scale advective cooling and moistening effects that are time varying.
It is found that the generalized convective available potential energy (GCAPE) tendency is almost one order of magnitude smaller than the GCAPE production in all simulations. This indicates that the quasi-equilibrium assumption of Arakawa and Schubert is well justified. The higher-order behavior of quasi-equilibrium cumulus ensemble is then examined. It is found that the GCAPE variations are nearly equally contributed by temperature and water vapor variations in the control simulation. In the sensitivity simulations, they are mainly contributed by the temperature (water vapor) variations even though the imposed large-scale advective cooling (moistening) is time invariant. A significant finding of this study is that there is a negative lag correlation between GCAPE and the intensity of cumulus convection. The lag corresponding to the largest negative correlation ranges from 1 to 5 h in various simulations. The existence of a negative correlation and the maximum lag of a few hours is independent of the character and period of the imposed large-scale advective forcing. The maximum lag can be interpreted as the adjustment timescale from disequilibrium to quasi-equilibrium states in the presence of time-varying large-scale forcing.
Corresponding author address: Dr. Kuan-Man Xu, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.
Email: kmxu@atmos.colostate.edu.