Gas Absorption into a Moving Spheroidal Water Drop

H. Amokrane Institut de Mécanique des Fluides, UMR–CNRS, Toulouse, France

Search for other papers by H. Amokrane in
Current site
Google Scholar
PubMed
Close
and
B. Caussade Institut de Mécanique des Fluides, UMR–CNRS, Toulouse, France

Search for other papers by B. Caussade in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Theoretical and experimental studies have been carried out to describe the absorption of sulfur dioxide by moving spheroidal water drops under transient flow conditions. These investigations allow the determination of the rate at which SO2 is scavenged from air by deformed spheroidal freely falling water drops. First, the theoretical models in the case of spheroidal water drops will be presented. For drops smaller than 1 mm in diameter, modeling is based on numerical solutions of Navier–Stokes and convective-diffusion equations, which describe transient flow and concentration fields, respectively, both in liquid and gas phases. For drops larger than 1 mm in diameter, modeling is based on scaling of interfacial agitation taking into account the effect of turbulent mixing and oscillation inside the drops. Second, an experimental device involving a 5-m rain shaft is presented in order to study SO2 absorption and to verify the theoretical models for spheroidal water drops. The predicted sulfur concentrations inside the drop are compared with the experimental results for three categories of experiments (reversible absorption, irreversible absorption, and desorption). Adequate correlation between theory and experiment was obtained for a specified value of the aspect ratio E, which is a function of the equivalent diameter of the drop.

Corresponding author address: Dr. Bernard Caussade, Institut de Mécanique des Fluides, Allée Camille Soula, 31400 Toulouse, France.

Abstract

Theoretical and experimental studies have been carried out to describe the absorption of sulfur dioxide by moving spheroidal water drops under transient flow conditions. These investigations allow the determination of the rate at which SO2 is scavenged from air by deformed spheroidal freely falling water drops. First, the theoretical models in the case of spheroidal water drops will be presented. For drops smaller than 1 mm in diameter, modeling is based on numerical solutions of Navier–Stokes and convective-diffusion equations, which describe transient flow and concentration fields, respectively, both in liquid and gas phases. For drops larger than 1 mm in diameter, modeling is based on scaling of interfacial agitation taking into account the effect of turbulent mixing and oscillation inside the drops. Second, an experimental device involving a 5-m rain shaft is presented in order to study SO2 absorption and to verify the theoretical models for spheroidal water drops. The predicted sulfur concentrations inside the drop are compared with the experimental results for three categories of experiments (reversible absorption, irreversible absorption, and desorption). Adequate correlation between theory and experiment was obtained for a specified value of the aspect ratio E, which is a function of the equivalent diameter of the drop.

Corresponding author address: Dr. Bernard Caussade, Institut de Mécanique des Fluides, Allée Camille Soula, 31400 Toulouse, France.

Save
  • Abbott, C. E., and T. W. Cannon, 1972: A droplet generator with electronic control of size, production rate and charge. Rev. Sci. Instrum.,43 (9), 1313–1317.

  • Altwicker, E. R., and C. E. Lindhjem, 1988: Absorption of gases into drops. AIChE J.,34 (2), 329–332.

  • Amokrane, H., 1993: Etude expérimentale et modélisation de l’absorption de dioxyde de soufre en milieu dispersé liquide. Ph.D. thesis, Institut National Polytechnique de Toulouse, France, 286 pp. [Available from INP, Place des Hauts-Muzats, 31006 Toulouse, France.].

  • ——, A. Saboni, and B. Caussade, 1994: Experimental study and parameterization of gas absorption by water drops. AIChE J.,40 (12), 1950–1960.

  • Angelo, J. B., E. N. Lightfoot, and D. W. Howard, 1966: Generalization of the penetration theory for surface stretch: Application to forming and oscillating drops. AIChE J.,12 (4), 751–760.

  • Baboolal, L. B., H. R. Pruppacher, and J. H. Topalian, 1981: A sensitivity study of a theoretical model of SO2 scavenging by water drops in air. J. Atmos. Sci.,38, 856–870.

  • Baleix, A., 1984: Contribution à l’etude de l’influence du nombre de Schmidt dans le phénomène d’absorption. Ph.D. thesis, Institut National Polytechnique, Toulouse, France, 236 pp. [Available from INP, Place des Hauts-Muzats, 31006 Toulouse, France.].

  • Barrie, L. A., and H. W. Georgii, 1976: An experimental investigation of the absorption of SO2 by water drops containing heavy metal ions. Atmos. Environ.,10, 743–749.

  • Batchelor, G. K., 1988: An Introduction to Fluid Dynamics. Cambridge University Press, 236 pp.

  • Beard, K. V., and H. R. Pruppacher, 1971: A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci.,28, 1455–1464.

  • Beilke, S., and H. W. Georgii, 1968: Investigation in the incorporation of SO2 into fog and rain drops. Tellus,20, 435–442.

  • Berry, E. X., and M. R. Pranger, 1974: Equations for calculating the terminal velocities of water drops. J. Appl. Meteor.,13, 108–113.

  • Calderbank, P. H., and I. J. O. Korchinski, 1956: Circulation in liquid drops. Chem. Eng. Sci.,6, 65–78.

  • Caussade, B., and A. Saboni, 1992: Mass transfer on a moving water drop: Numerical investigation. Proc. Fifth Int. Conf. on Precipitation Scavenging and Atmosphere-Surface Exchange Processes, Vol. 1, Richland, WA, U.S. Environmental Protection Agency and Electric Power Research Institute, 29–40.

  • ——, J. George, and L. Masbernat, 1990: Experimental study and parameterization of interfacial gas absorption. AIChE J.,36 (2), 265–274.

  • Chuchottawom, P., and K. Asano, 1986: Numerical analysis of drag coefficients and the heat and mass transfer of spheroidal drops. J. Chem. Eng. Japan,19 (3), 208–213.

  • Clift, R., J. R. Grace, and M. E. Weber, 1978: Bubbles, Drops, and Particles. Academic Press, 380 pp.

  • Davies, J. T., 1972: Turbulence Phenomena. Academic Press, 412 pp.

  • ——, and S. T. Ting, 1967: Mass transfer into turbulent jets. Chem. Eng. Sci.,22, 1539–1548.

  • Fortescue, G. E., and J. R. A. Pearson, 1967: On gas absorption into a turbulent liquid. Chem. Eng. Sci.,22, 1163–1176.

  • Garner, F. H., and J. J. Lane, 1959: Mass transfer to drops of liquid suspended in gas stream. Trans. Inst. Chem. Eng.,37, 167–172.

  • Hadamard, J., 1911: Mouvement permanent lent d’une sphère liquide et visqueuse dans un liquide visqueux. C. R. Acad. Sci.,152, 1735–1738.

  • Hamielec, A. E., T. W. Hoffman, and L. L. Ross, 1967: Numerical solution of the Navier–Stokes equation for flow past spheres. AIChE J.,13, 212–219.

  • Handlos, A. E., and T. Baron, 1957: Mass and heat transfer from drops in liquid-liquid extraction. AIChE J.,3 (1), 127–135.

  • Henstock, W. H., and J. J. Hanratty, 1979: Gas absorption by a liquid layer flowing on the wall of a pipe. AIChE J.,25, 122–131.

  • Hidy, G., 1970: Theory of diffusive and impactive scavenging precipitation scavenging U. S. Atomic Energy Commission, 355–371. [NTIS conf-700601.].

  • Hoffman, M. R., and J. O. Edwards, 1975: Kinetics of the oxidation of sulfite by hydrogen peroxide in acidic solution. J. Phys. Chem.,79 (70), 2096–2098.

  • Jähne, B., K. O. Munnich, R. Bosinger, A. Dutzi, W. Huber, and P. Libner, 1987: On the parameters influencing air–water gas exchange. J. Geophys. Res.,92 (C2), 1937–1949.

  • Johnson, A. I., A. I. Hamielec, and W. T. Houghton, 1967: An experimental study of mass transfer with chemical reaction from single gas bubbles. Can. J. Chem. Eng.,45, 140–144.

  • Kaji, R., Y. Hishinuma, and H. Kuroda, 1985: SO2 absorption by water droplets. J. Chem. Eng. Japan,18 (2), 169–172.

  • Kronig, R., and J. C. Brink, 1950: On the theory of extraction from falling droplets. Appl. Sci. Res.,A2, 142–154.

  • Lamb, H., 1932: Hydrodynamics. Cambridge University Press, 258 pp.

  • Lamont, J. C., and D. S. Scott, 1970: An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE J.,16 (4), 513.

  • Larbi, S., G. Bacon, and S. A. Bories, 1995: Diffusion d’air liquide avec condensation de vapeur d’eau en milieu poreux. Int. J. Heat Mass Transfer,38, 2411–2426.

  • Leclair, B. P., A. E. Hamielec, and H. R. Pruppacher, 1970: A numerical study of the drag on a sphere at low and intermediate Reynolds numbers. J. Atmos. Sci.,27, 308–315.

  • ——, ——, ——, and W. D. Hall, 1972: A theoretical and experimental study of the internal circulations in water drops falling at terminal velocity in air. J. Atmos. Sci.,29, 728–740.

  • Ledwell, J. J., 1984: The variation of the gas transfer coefficient with molecular diffusivity. Gas Transfer at Water Surfaces, W. Brutsaert and G. H. Jirka, Eds., D. Reidel, 293–302.

  • Levich, V. G., 1962: Physico Chemical Hydrodynamics. Prentice-Hall, 1700 pp.

  • Mac Cormack, R. W., 1981: A Numerical method for solving the equations of compressible viscous flow. AIAA J.,81-0110, 1–9.

  • Martin, L. R., and D. E. Damschen, 1981: Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH. Atmos. Environ.,15 (9), 1615–1621.

  • Masliyah, J. H., and N. Epstein, 1970: Numerical study of steady flow past spheroids. J. Fluid Mech.,44 (3), 493–512.

  • Newman, A. B., 1931: The drying of porous solids: Diffusions calculations. Trans. Amer. Inst. Chem. Eng.,27, 310–333.

  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1988: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University, 994 pp.

  • Pruppacher, H. R., and R. L. Pitter, 1971: A semi-empirical determination of the shape of cloud and rain drops. J. Atmos. Sci.,28, 86–94.

  • Ramachandran, R., 1985: Mathematical modelling and computer simulation of mass transfer in simple multi-drop systems. Ph.D. thesis, Rensselaer Polytechnical Institute, 292 pp. [Available from RPI, 110 8th St., Troy, NY 12180.].

  • Rimon, Y., and S. I. Cheng, 1969: Numerical solution of a uniform flow over a sphere at intermediate Reynolds numbers. Phys. Fluids,12 (5), 949–959.

  • Ruckenstein, E., 1967: Mass transfer between a single drop and a continuous phase. Int. J. Heat Mass Transfer,1, 1785–1792.

  • Theofanous, T. G., R. N. Houze, and L. K. Brumfield, 1974: Turbulent mass transfer at free, gas–liquid interfaces, with applications to open-channel, bubble, and jet flows. ASME-AIAA Thermophysics and Heat Transfer Conf., Boston, MA, ASME-AIAA.

  • Tsacoyannis, J., 1976: Etude de l’absorption d’un gaz par un liquide en ecoulement turbulent stratifié. Ph.D. thesis, Université Paul Sabatier, Toulouse, France, 138 pp. [Available from UPS, 118 Route de Nazbonne, 31062 Toulouse, France.].

  • Tsacoyannis, Y., B. Caussade, and L. Masbernat, 1978: Absorption in co-current gas-liquid stratified channel flow. Proc. Int. Seminar on Momentum Heat and Heat Transfer, Two-Phase Momentum, Heat and Mass Transfer in Chemical, Process, snf Energy Engineering Systems, F. Durst et al., Eds., Vol. 2, Hemisphere Publishing Corporation, 911–920.

  • Ueda, H., R. Moller, S. Komoris, and T. Mizushina, 1977: Eddy diffusivity near the free surface of open channel flow. Int. J. Heat Mass Transfer,20, 1127–1136.

  • Walcek, C. J., and H. R. Pruppacher, 1984: On the scavenging of SO2 by cloud and raindrops: I. A theoretical study of SO2 absorption and desorption for water drops in air. J. Atmos. Chem.,1, 269–289.

  • ——, P. K. Wang, J. H. Topalian, S. K. Mitra, and H. R. Pruppacher, 1981: An experimental test of a theoretical model to determine the rate at which freely falling water drops scavenge SO2 in Air. J. Atmos. Sci.,38, 871–876.

  • ——, H. R. Pruppacher, J. H. Topalian, and S. K. Mitra, 1984: On the scavenging of SO2 by cloud and raindrops: II. An experimental study of SO2 absorption and desorption for water drops in air. J. Atmos. Chem.,1, 291–306.

  • Wang, P. K., and H. R. Pruppacher, 1977: Acceleration to terminal velocity of cloud and rain drops. J. Appl. Meteor.,16, 275–280.

  • Watada, H. A., A. E. Hamielec, and A. I. Johnson, 1970: A theoretical study of mass transfer with chemical reactions in drops. Can. J. Chem. Eng.,48, 255–261.

  • Whitman, W. G., 1923: Preliminary experimental confirmation of the Two-Film Theory of gas absorption. Chem. Metall. Eng.,29, 146–148.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 921 247 61
PDF Downloads 540 109 11