Abstract
Deep convection and its associated mesoscale circulations are modeled using a three-dimensional elastic model with bulk microphysics and interactive radiation for a composite easterly wave from the Global Atmospheric Research Program Atlantic Tropical Experiment. The energy and moisture budgets, large-scale heat sources and moisture sinks, microphysics, and radiation are examined.
The modeled cloud system undergoes a life cycle dominated by deep convection in its early stages, followed by an upper-tropospheric mesoscale circulation. The large-scale heat sources and moisture sinks associated with the convective system agree broadly with diagnoses from field observations. The modeled upper-tropospheric moisture exceeds observed values. Strong radiative cooling at the top of the mesoscale circulation can produce overturning there. Qualitative features of observed changes in large-scale convective available potential energy and convective inhibition are found in the model integrations, although quantitative magnitudes can differ, especially for convective inhibition.
Radiation exerts a strong influence on the microphysical properties of the cloud system. The three-dimensional integrations exhibit considerably less sporadic temporal behavior than corresponding two-dimensional integrations. While the third dimension is less important over timescales longer than the duration of a phase of an easterly wave in the lower and middle troposphere, it enables stronger interactions between radiation and dynamics in the upper-tropospheric mesoscale circulation over a substantial fraction of the life cycle of the convective system.
Corresponding author address: Dr. Leo J. Donner, Geophysical Fluid Dynamics Laboratory, NOAA, Princeton University, P.O. Box 308, Princeton, NJ 08542.
Email: ljd@gfdl.gov