Mesoscale Temperature Fluctuations Induced by a Spectrum of Gravity Waves: A Comparison of Parameterizations and Their Impact on Stratospheric Microphysics

Julio T. Bacmeister Universities Space Research Association, Columbia, Maryland

Search for other papers by Julio T. Bacmeister in
Current site
Google Scholar
PubMed
Close
,
Stephen D. Eckermann Computational Physics, Inc., Fairfax, Virginia

Search for other papers by Stephen D. Eckermann in
Current site
Google Scholar
PubMed
Close
,
Athanasios Tsias Max Planck Institute for Chemistry, Mainz, Germany

Search for other papers by Athanasios Tsias in
Current site
Google Scholar
PubMed
Close
,
Kenneth S. Carslaw Max Planck Institute for Chemistry, Mainz, Germany

Search for other papers by Kenneth S. Carslaw in
Current site
Google Scholar
PubMed
Close
, and
Thomas Peter Max Planck Institute for Chemistry, Mainz, Germany

Search for other papers by Thomas Peter in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Power spectral densities (PSDs) of mesoscale fluctuations of temperature and rate of change of temperature (heating–cooling rate) due to a spectrum of stratospheric gravity waves are derived using canonical spectral forms based on observations and linear gravity wave theory. The parameterization developed here assumes a continuous distribution of horizontal wave phase speeds, as opposed to a previous spectral parameterization in which all waves were assigned stationary ground-based phase speeds. Significantly different heating–cooling rate PSDs result in each case. The differences are largest at small horizontal scales, where the continuous phase-speed parameterization yields heating–cooling rate PSDs that are several orders of magnitude smaller than in the stationary phase-speed parameterization. A simple Monte Carlo method is used to synthesize randomly phased temperature perturbation time series within tagged air parcels using either spectral parameterization. These time series are incorporated into a nonequilibrium, microphysical trajectory-box model to assess the microphysical consequences of each parameterization. Collated results yield a “natural” geophysical scatter of instantaneous aerosol volumes within air parcels away from equilibrium conditions. The amount of scatter was much smaller when the continuous phase-speed parameterization was used.

Corresponding author address: S. D. Eckermann, E. O. Hulburt Center for Space Research, Code 7641, Naval Research Laboratory, Washington, DC 20375.

Abstract

Power spectral densities (PSDs) of mesoscale fluctuations of temperature and rate of change of temperature (heating–cooling rate) due to a spectrum of stratospheric gravity waves are derived using canonical spectral forms based on observations and linear gravity wave theory. The parameterization developed here assumes a continuous distribution of horizontal wave phase speeds, as opposed to a previous spectral parameterization in which all waves were assigned stationary ground-based phase speeds. Significantly different heating–cooling rate PSDs result in each case. The differences are largest at small horizontal scales, where the continuous phase-speed parameterization yields heating–cooling rate PSDs that are several orders of magnitude smaller than in the stationary phase-speed parameterization. A simple Monte Carlo method is used to synthesize randomly phased temperature perturbation time series within tagged air parcels using either spectral parameterization. These time series are incorporated into a nonequilibrium, microphysical trajectory-box model to assess the microphysical consequences of each parameterization. Collated results yield a “natural” geophysical scatter of instantaneous aerosol volumes within air parcels away from equilibrium conditions. The amount of scatter was much smaller when the continuous phase-speed parameterization was used.

Corresponding author address: S. D. Eckermann, E. O. Hulburt Center for Space Research, Code 7641, Naval Research Laboratory, Washington, DC 20375.

Save
  • Alexander, M. J., 1996: A simulated spectrum of convectively generated gravity waves: Propagation from the tropopause to the mesopause and effects on the middle atmosphere. J. Geophys. Res.,101, 1571–1588.

  • ——, and L. Pfister, 1995: Gravity wave momentum flux in the lower stratosphere over convection. Geophys. Res. Lett.,22, 2029–2032.

  • Allen, S. J., and R. A. Vincent, 1995: Gravity-wave activity in the lower atmosphere: Seasonal and latitudinal variations. J. Geophys. Res.,100, 1327–1350.

  • Bacmeister, J. T., M. R. Schoeberl, L. R. Lait, P. A. Newman, and B. Gary, 1990: ER-2 mountain wave encounter over Antarctica:Evidence for blocking. Geophys. Res. Lett.,17, 81–84.

  • ——, S. D. Eckermann, P. A. Newman, L. Lait, K. R. Chan, M. Loewenstein, M. H. Proffitt, and B. L. Gary, 1996: Stratospheric horizontal wavenumber spectra of winds, potential temperature and atmospheric tracers observed by high-altitude aircraft. J. Geophys. Res.,101, 9441–9470.

  • ——, ——, L. Sparling, K. R. Chan, M. Loewenstein, and M. H. Proffitt, 1997a: Analysis of intermittency in aircraft measurements of velocity, temperature and atmospheric tracers using wavelet transforms. Gravity Wave Processes and their Parameterization in Global Climate Models, K. P. Hamilton, Ed., NATO ASI Series, Vol. I50, 85–102.

  • ——, ——, and C. J. Marks, 1997b: Analysis and modeling of stratospheric gravity wave activity along ER-2 flight tracks. The proceedings of the first SPARC general assembly. WMO World Climate Research Rep. 99, Vol. I, 283–286.

  • Benzi, R. L., A. Biferale, A. Crisanti, G. Paladin, M. Vergassola, and A. Vulpani, 1993: A random process for the construction of multiaffine fields. Physica D,65, 352–358.

  • Borrmann, S., S. Solomon, J. E. Dye, D. Baumgardner, K. K. Kelly, and K. R. Chan, 1997: Heterogeneous reactions on stratospheric background aerosols, volcanic sulfuric acid droplets, and type I polar stratospheric clouds: Effects of temperature fluctuations and differences in particle phase. J. Geophys. Res.,102, 3639–3648.

  • Cariolle, D., S. Muller, F. Cayla, and M. P. McCormick, 1989: Mountain waves, polar stratospheric clouds, and the ozone depletion over Antarctica. J. Geophys. Res.,94, 11 233–11 240.

  • Carslaw, K. S., B. P. Luo, S. L. Clegg, T. Peter, P. Brimblecombe, and P. J. Crutzen, 1994: Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles. Geophys. Res. Lett.,21, 2479–2482.

  • ——, T. Peter, and S. L. Clegg, 1997: Modeling the composition of liquid stratospheric aerosols. Rev. Geophys.,35, 125–154.

  • ——, and Coauthors, 1998a: Particle microphysics and chemistry in remotely observed mountain polar stratospheric clouds. J. Geophys. Res.,103, 5785–5796.

  • ——, and Coauthors, 1998b: Increased stratospheric ozone depletion due to mountain-induced atmospheric waves. Nature,391, 675–678.

  • ——, T. Peter, J. T. Bacmeister, and S. D. Eckermann, 1999: Widespread solid particle formation by mountain waves in the Arctic stratosphere. J. Geophys. Res.,104, 1827–1836.

  • Deshler, T., T. Peter, R. Müller, and P. Crutzen, 1994: The lifetime of leewave-induced ice particles in the Arctic stratosphere. I: Balloonborne observations. Geophys. Res. Lett.,21, 1327–1330.

  • Dewan, E. M., 1997: Saturated-cascade similitude theory of gravity wave spectra. J. Geophys. Res.,102, 29 799–29 817.

  • Drdla, K., and R. P. Turco, 1991: Denitrification through PSC formation: A 1D model incorporating temperature oscillations. J. Atmos. Chem.,12, 319–366.

  • ——, A. Tabazadeh, R. P. Turco, M. Z. Jacobson, J. E. Dye, C. Twohy, and D. Baumgardner, 1994: Analysis of the physical state of one Arctic polar stratospheric cloud based on observations. Geophys. Res. Lett.,21, 2475–2478.

  • Dye, J. E., and Coauthors, 1992: Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation. J. Geophys. Res.,97, 8015–8034.

  • Eckermann, S. D., 1990: Effects of nonstationarity on spectral analysis of mesoscale motions in the atmosphere. J. Geophys. Res.,95, 16 685–16 703.

  • ——, 1995: Effect of background winds on the vertical wavenumber spectrum of atmospheric gravity waves. J. Geophys. Res.,100, 14 097–14 112.

  • ——, D. E. Gibson-Wilde, and J. T. Bacmeister, 1998: Gravity wave perturbations of minor constituents: A parcel advection methodology. J. Atmos. Sci.,55, 3521–3539.

  • Elliott, F. W., Jr., D. J. Horntrop, and A. J. Majda, 1997: A Fourier-wavelet Monte Carlo method for fractal random fields. J. Comput. Phys.,132, 384–408.

  • Fritts, D. C., and T. E. VanZandt, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part I: Energy dissipation, acceleration, and constraints. J. Atmos. Sci.,50, 3685–3694.

  • Fromm, M. D., J. D. Lumpe, R. M. Bevilacqua, E. P. Shettle, J. Hornstein, S. T. Massie, and K. H. Fricke, 1997: Observations of Antarctic polar stratospheric clouds by POAM II: 1994–1996. J. Geophys. Res.,102, 23 659–23 672.

  • Gardner, C. S., 1996: Testing theories of atmospheric gravity wave saturation and dissipation. J. Atmos. Terr. Phys.,58, 1575–1589.

  • ——, C. A. Hostetler, and S. J. Franke, 1993a: Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density perturbations. J. Geophys. Res.,98, 1035–1049.

  • ——, ——, and S. Lintelman, 1993b: Influence of the mean wind field on the separability of atmospheric perturbation spectra. J. Geophys. Res.,98, 8859–8872.

  • Godin, S., G. Mégie, C. David, D. Haner, C. Flesia, and Y. Emery, 1994: Airborne lidar observation of mountain-wave-induced polar stratospheric clouds during EASOE. Geophys. Res. Lett.,21, 1335–1338.

  • Hines, C. O., 1991: The saturation of gravity waves in the middle atmosphere. Part II: Development of Doppler-spread theory. J. Atmos. Sci.,48, 1360–1379.

  • Jensen, E. J., and G. E. Thomas, 1994: Numerical simulations of the effects of gravity waves on noctilucent clouds. J. Geophys. Res.,99, 3421–3430.

  • ——, and O. B. Toon, 1994: Ice nucleation in the upper troposphere: Sensitivity to aerosol number density, temperature and cooling rate. Geophys. Res. Lett.,21, 2019–2022.

  • ——, ——, L. Pfister, and H. B. Selkirk, 1996: Dehydration of the upper troposphere and lower stratosphere by subvisible cirrus clouds near the tropical tropopause. Geophys. Res. Lett.,23, 825–828.

  • Koop, T., U. M. Biermann, W. Raber, B. P. Luo, P. J. Crutzen, and T. Peter, 1995: Do stratospheric aerosol droplets freeze above the ice frost point? Geophys. Res. Lett.,22, 917–920.

  • ——, B. P. Luo, U. M. Biermann, P. J. Crutzen, and T. Peter, 1997: Freezing of HNO3/H2SO4/H2O solutions at stratospheric temperatures: Nucleation statistics and experiments. J. Phys. Chem.,101, 1117–1133.

  • Leutbecher, M., and H. Volkert, 1996: Stratospheric temperature anomalies and mountain waves: A three-dimensional simulation using a multiscale weather prediction model. Geophys. Res. Lett.,23, 3329–3332.

  • Lin, H., K. J. Noone, J. Ström, and A. J. Heymsfield, 1998: Dynamical influences on cirrus cloud formation process. J. Atmos. Sci.,55, 1940–1949.

  • Meilinger, S. K., T. Koop, B. P. Luo, T. Huthwelker, K. S. Carslaw, U. Krieger, P. J. Crutzen, and T. Peter, 1995: Size-dependent stratospheric droplet composition in lee wave temperature fluctuations and their potential role in PSC freezing. Geophys. Res. Lett.,22, 3031–3034.

  • Murphy, D. M., and B. L. Gary, 1995: Mesoscale temperature fluctuations and polar stratospheric clouds. J. Atmos. Sci.,52, 1753–1760.

  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci.,42, 950–960.

  • ——, D. C. Fritts, and K. S. Gage, 1987: An investigation of terrain effects on the mesoscale spectrum of atmospheric motions. J. Atmos. Sci.,44, 3087–3096.

  • Owens, A. J., 1978: An algorithm for generating fluctuations having an arbitrary power spectrum. J. Geophys. Res.,83, 1673–1675.

  • Peter, T., R. Müller, P. J. Crutzen, and T. Deshler, 1994: The lifetime of leewave-induced ice particles in the Arctic stratosphere. II: Stabilization due to NAT-coating. Geophys. Res. Lett.,21, 1331–1334.

  • Potter, B. E., and J. R. Holton, 1995: The role of monsoon convection in the dehydration of the lower tropical stratosphere. J. Atmos. Sci.,52, 1034–1050.

  • Tabazadeh, A., R. P. Turco, K. Drdla, M. Z. Jacobson, and O. B. Toon, 1994: A study of type I polar stratospheric cloud formation. Geophys. Res. Lett.,21, 1619–1622.

  • ——, O. B. Toon, B. L. Gary, J. T. Bacmeister, and M. R. Schoeberl, 1996: Observational constraints on the formation of type 1a polar stratospheric clouds. Geophys. Res. Lett.,23, 2109–2112.

  • Tsias, A., A. J. Prenni, K. S. Carslaw, T. P. Onasch, B. P. Luo, M. A. Tolbert, and T. Peter, 1997: Freezing of polar stratospheric clouds in orographically induced strong warming events. Geophys. Res. Lett.,24, 2303–2306.

  • Tsuda, T., T. E. VanZandt, M. Mizumoto, S. Kato, and S. Fukao, 1991: Spectral analysis of temperature and Brunt–Väisälä frequency fluctuations observed by radiosondes. J. Geophys. Res.,96, 17 265–17 278.

  • Turco, R. P., O. B. Toon, R. C. Whitten, R. G. Keesee, and D. Hollenbach, 1982: Noctilucent clouds: Simulation studies of their genesis, properties and global influences. Planet. Space Sci.,30, 1147–1181.

  • Vincent, R. A., and S. D. Eckermann, 1990: VHF radar observations of mesoscale motions in the troposphere: Evidence of gravity wave Doppler shifting. Radio Sci.,25, 1019–1037.

  • Whiteway, J. A., T. J. Duck, D. P. Donovan, J. C. Bird, S. R. Pal, and A. I. Carswell, 1997: Measurements of gravity wave activity within and around the Arctic stratospheric vortex. Geophys. Res. Lett.,24, 1387–1390.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 521 304 207
PDF Downloads 112 23 1