Abstract
An analysis of the condensation and evaporation processes involved in the classic Sommeria–Deardoff–Mellor turbulence cloud models is presented. A liquid water budget is derived from the diagnostic Gaussian cloud relations. It is found that the adiabatic condensation generated by turbulent eddies at the cloud base and the mean radiative cooling at the cloud top are the two major processes responsible for the condensation in the parameterizations for stratocumulus-topped boundary layers. The evaporation is directly related to the stratification of the boundary layers and the turbulence variability (variance and covariance) of the conserved thermodynamic variables. The evaporation caused by the turbulence variability plays a dominant role at the cloud top. The analysis also shows that the profile of the parameterized liquid water flux is primarily determined by the turbulence-generated condensation and evaporation in the cloud model. This model is also compared with other prognostic cloud schemes.
Corresponding author address: Shouping Wang, Universities Space Research Association, Global Hydrology and Climate Center, 977 Explorer Blvd., Huntsville, AL 35806.
Email: wangsx@vmcs.msfc.nasa.gov