On the Transition of Contrails into Cirrus Clouds

F. Schröder Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen, Germany

Search for other papers by F. Schröder in
Current site
Google Scholar
PubMed
Close
,
B. Kärcher Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen, Germany

Search for other papers by B. Kärcher in
Current site
Google Scholar
PubMed
Close
,
C. Duroure Laboratoire de Meteorologie Physique, Université Blaise Pascal, Clermont-Ferrand, France

Search for other papers by C. Duroure in
Current site
Google Scholar
PubMed
Close
,
J. Ström Meteorologiska Institutionen, Stockholms Universitet, Stockholm, Sweden

Search for other papers by J. Ström in
Current site
Google Scholar
PubMed
Close
,
A. Petzold Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen, Germany

Search for other papers by A. Petzold in
Current site
Google Scholar
PubMed
Close
,
J.-F. Gayet Laboratoire de Meteorologie Physique, Université Blaise Pascal, Clermont-Ferrand, France

Search for other papers by J.-F. Gayet in
Current site
Google Scholar
PubMed
Close
,
B. Strauss Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen, Germany

Search for other papers by B. Strauss in
Current site
Google Scholar
PubMed
Close
,
P. Wendling Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen, Germany

Search for other papers by P. Wendling in
Current site
Google Scholar
PubMed
Close
, and
S. Borrmann Institut für Stratosphärenchemie, ICG-1, Forscgunhszentrum Jülich, Germany

Search for other papers by S. Borrmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In situ observations of the microphysical properties of upper-tropospheric contrails and cirrus clouds have been performed during more than 15 airborne missions over central Europe. Experimental and technical aspects concerning in situ characterization of ice clouds with the help of optical and nonoptical detection methods (preferably FSSP-300 and Hallet-type replicator) are addressed. The development of contrails into cirrus clouds on the timescale of 1 h is discussed in terms of a representative set of number densities, and size distributions and surface area distributions of aerosols and cloud elements, with special emphasis on small ice crystals (diameter <20 μm). Contrails are dominated by high concentrations (>100 cm−3) of nearly spherical ice crystals with mean diameters in the range 1–10 μm. Young cirrus clouds, which mostly contain small regularly shaped ice crystals in the range 10–20-μm diameter and typical concentrations 2–5 cm−3, have been observed. Measurement results are compared to simple parcel model calculations to identify parameters relevant for the contrail–cirrus transition. Observations and model estimates suggest that contrail growth is only weakly, if at all, affected by preexisting cirrus clouds.

Corresponding author address: Franz Schröder, Institut für Physik der Atmosphäre, Postfach 1116, D-82234 Weßling, Germany.

Email: franz.schroeder@dlr.de

Abstract

In situ observations of the microphysical properties of upper-tropospheric contrails and cirrus clouds have been performed during more than 15 airborne missions over central Europe. Experimental and technical aspects concerning in situ characterization of ice clouds with the help of optical and nonoptical detection methods (preferably FSSP-300 and Hallet-type replicator) are addressed. The development of contrails into cirrus clouds on the timescale of 1 h is discussed in terms of a representative set of number densities, and size distributions and surface area distributions of aerosols and cloud elements, with special emphasis on small ice crystals (diameter <20 μm). Contrails are dominated by high concentrations (>100 cm−3) of nearly spherical ice crystals with mean diameters in the range 1–10 μm. Young cirrus clouds, which mostly contain small regularly shaped ice crystals in the range 10–20-μm diameter and typical concentrations 2–5 cm−3, have been observed. Measurement results are compared to simple parcel model calculations to identify parameters relevant for the contrail–cirrus transition. Observations and model estimates suggest that contrail growth is only weakly, if at all, affected by preexisting cirrus clouds.

Corresponding author address: Franz Schröder, Institut für Physik der Atmosphäre, Postfach 1116, D-82234 Weßling, Germany.

Email: franz.schroeder@dlr.de

Save
  • Anderson, T. L., R. J. Charlson, and D. S. Covert, 1993: Calibration of a counerflow virtual impactor at aerodynamic diameters from 1 to 15 μm. Aerosol Sci. Technol.,19, 317–329.

  • Baumgardner, D., and M. Spowart, 1990: Evaluation of the Forward Scattering Spectrometer Probe. Part III: Time response and laser inhomogeneity limitations. J. Atmos. Oceanic Technol.,7, 666–672.

  • ——, and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol.,14, 1224–1229.

  • ——, and B. Gandrud, 1998: A comparison of the microphysical and optical properties of particles in an aircraft contrail and mountain wave cloud. Geophys. Res. Lett.,25, 1129–1132.

  • ——, W. Strapp, and J. E. Dye, 1985: Evaluation of the Forward Scattering Spectrometer Probe. Part II: Corrections for coincidence and dead-time losses. J. Atmos. Oceanic Technol.,2, 626–632.

  • ——, J. E. Dye, B. W. Gandrud, and R. G. Knollenberg, 1992: Interpretation of measurements made by the forward scattering spectrometer probe (FSSP-300) during the Airborne Arctic Stratospheric Expedition. J. Geophys. Res.,97, 8035–8046.

  • ——, ——, ——, K. Barr, K. Kelly, and K. R. Chan, 1996: Refractive indices of aerosols in the upper troposphere and lower stratosphere. Geophys. Res. Lett.,23, 749–752.

  • ——, R. C. Miake-Lye, M. R. Anderson, and R. C. Brown, 1998: An evaluation of temperature, water vapor, and vertical velocity structure of aircraft contrails. J. Geophys. Res.,103 (D8), 8727–8736.

  • Borrmann, S., S. Solomon, J. E. Dye, and B. Luo, 1996: The potential of cirrus clouds for heterogeneous chlorine activation. Geophys. Res. Lett.,23, 2133–2136.

  • Brasseur, G. P., and Coauthors, 1998: The atmospheric effects of aircraft emissions. Scientific assessment on behalf of the European Commission. Atmos. Environ.,32, 2329–2418.

  • Brenguier, J. L., 1989: Coincidence and dead-time corrections for particle counters. Part II: High concentration measurements with a FSSP. J. Atmos. Oceanic Technol.,6, 585–598.

  • ——, D. Baumgardner, and B. Baker, 1994: A review and discussion of processing algorithms for FSSP concentration measurements. J. Atmos. Oceanic Technol.,11, 1409–1414.

  • Busen, R., R. Baumann, A. Petzold, F. Schröder, and U. Schumann, 1997: Aircraft measurements on the formulation and dilution of contrails. DLR-Mitt. 97-04, 11 pp. [Available from reinhold.busen@dlr.de].

  • Cooper, W. A., 1988: Effects of coincidence on measurements with a forward scattering spectrometer probe. J. Atmos. Oceanic Technol.,5, 823–832.

  • Crepel, O., J.-F. Gayet, J.-F. Fournol, and S. Oshchepkov, 1997: A new airborne Polar Nephelometer for the measurement of optical and microphysical cloud propperties. Part II: Prelimminary tests. Ann. Geophys.,15, 460–470.

  • Crutzen, P. J., and V. Ramanathan, 1996: Clouds, Chemistry, and Climate: Global Environmental Change. NATO ASI Series I, Vol. 35, Springer-Verlag, 130 pp.

  • DeMott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Parameterization and impact of ice initiation processes relevant to numerical simulations of cirrus clouds. J. Atmos. Sci.,51, 77–90.

  • ——, D. C. Rogers, and S. M. Kreidenweis, 1997: The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components. J. Geophys. Res.,102, 19 575–19 584.

  • Duroure, C., H. R. Larsen, H. Isaka, and P. Personne, 1994: 2D image population analysis. J. Rech. Atmos.,34, 195–205.

  • Friedl, R. R., Ed., 1997: Atmospheric effects of subsonic aircraft. Interim Assessment Rep., Advanced Subsonic Technology Program, NASA Ref. Publ. 1400, 168 pp. [Available from Hans.Schlager@dlr.de or Franz.Schröder@dlr.de].

  • Freudenthaler, V., F. Homburg, and H. Jäger, 1995: Contrail observations by ground-based scanning lidar: Cross-sectional growth. Geophys. Res. Lett.,22, 3501–3504.

  • Fu, Q., and K. N. Liou, 1993: Parameterization of radiative properties of cirrus clouds. J. Atmos. Sci.,50, 2008–2019.

  • Gayet, J.-F., P. R. Brown, and F. Albers, 1993: A comparison on in-cloud measurements obtained with six PMS 2D-C probes. J. Atmos. Oceanic Technol.,10, 180–194.

  • ——, G. Febvre, and H. Larsen, 1996: The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Oceanic Technol.,13, 1300–1310.

  • ——, and Coauthors, 1998: In situ measurements of the scattering phase function of stratocumulus, contrails and cirrus. Geophys. Res. Lett.,25, 991–994.

  • Gerz, T., and F. Holzäpfel, 1999: Wingtip vortices, turbulence, and the distribution of emissions. AIAA J.,37 (10), 1270–1276.

  • ——, T. Dürbeck, and P. Konopka, 1998: Transport and effective diffusion of aircraft emissions. J. Geophys. Res.,103, 25 905–25 913.

  • Gierens, K., 1996: Numerical simulations of persistent contrails. J. Atmos. Sci.,53, 3333–3348.

  • ——, and E. Jensen, 1998: A numerical study of the contrail-to-cirrus transition. Geophys. Res. Lett.,25, 4341–4344.

  • Goodman, J., R. F. Pueschel, E. J. Jensen, S. Yerma, G. V. Ferry, S. D. Howard, S. A. Kinne, and D. Baumgardner, 1998: Shape and size of contrails ice particles. Geophys. Res. Lett.,25, 1327–1330.

  • Hallet, J., 1976: Measurement of size, concentration and structure of atmospheric particulates by the airborne continuous particle replicator. Desert Research Institute Rep. AFGL-TR-76-0149, 92 pp. [Available from Peter.Wendling@dlr.de].

  • Heymsfield, A. J., and R. M. Sabin, 1989: Cirrus crystal nucleation by homogenous freezing of solution droplets. J. Atmos. Sci.,46, 2252–2264.

  • ——, and L. M. Miloshevich, 1993: Homogenous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos. Sci.,50, 2335–2353.

  • ——, and G. M. McFarquhar, 1996: High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci.,53, 2424–2451.

  • ——, L. M. Miloshevich, C. Twohy, G. Sachse, and S. Ottmans, 1998a: Upper tropospheric relative humidity observations and implications for cirrus ice nucleation. Geophys. Res. Lett.,25, 1343–1346.

  • ——, R. P. Lawson, and G. W. Sachse, 1998b: Growth of ice crystals in a precipitating contrail. Geophys. Res. Lett.,25, 1335–1338.

  • Jensen, E. J., and O. B. Toon, 1997: The potential impact of soot particles from aircraft exhaust on cirrus clouds. Geophys. Res. Lett.,24, 249–252.

  • ——, ——, D. L. Westphal, S. Kinne, and A. Heymsfield, 1994: Microphysical modeling of Cirrus 1: Comparison with 1986 FIRE IFO Measurements. J. Geophys. Res.,99, 10 421–10 442.

  • ——, and Coauthors, 1998: Environmental conditions required for contrail formation and persistence. J. Geophys. Res.,103, 3929–3936.

  • Kärcher, B., Th. Peter, U. M. Biermann, and U. Schumann, 1996: The initial composition of jet condensation trails. J. Atmos. Sci.,53, 3066–3083.

  • ——, R. Busen, A. Petzold, F. P. Schröder, U. Schumann, and E. J. Jensen, 1998: Physicochemistry of aircraft-generated liquid aerosols, soot, and ice particles. Part 2: Comparison with observations and sensitivity studies. J. Geophys. Res.,103 (D14), 17 129–17 147.

  • Knollenberg, R. G., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor.,9, 86–103.

  • Korolev, A. V., S. V. Kusnetsov, Y. E. Makarov, and V. S. Novikov, 1991: Evaluation of measurements of particle size and sample area from optical array probes. J. Atmos. Oceanic Technol.,8, 514–522.

  • ——, J. W. Strapp, and G. A. Isaac, 1998: Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol.,15, 708–720.

  • Kuhn, M., A. Petzold, D. Baumgardner, and F. Schröder, 1998: Particle composition of a young condensation trail and of upper tropospheric aerosol. Geophys. Res. Lett.,25, 2679–2682.

  • Larsen, H., J.-F. Gayet, G. Febvre, H. Chepfer, and G. Broniez, 1998:Measurement errors in cirrus cloud microphysical properties. Ann. Geophys.,16, 266–276.

  • Lawson, R. P., A. Heymsfield, S. M. Aulenbach, and T. L. Jensen, 1998: Shapes, sizes and light scattering properties of ice crystals in cirrus and a persistent contrail during SUCCESS. Geophys. Res. Lett.,25, 1331–1334.

  • Lin, H., K. J. Noone, J. Ström, and A. J. Heymsfield, 1998: Small ice crystals in cirrus clouds: A model study and comparison with in situ observations. J. Atmos. Sci.,55, 1928–1939.

  • Mannstein, H., R. Meyer, and P. Wendling, 1999: Operational detection of contrails from NOAA-AVHRR-data. Int. J. Remote Sens.,20, 1641–1660.

  • Mertes, S., F. Schröder, and A. Wiedensohler, 1995: The particle detection efficiency curve of the TSI-3010 CPC as a function of the temperature difference between saturator and condenser. Aerosol Sci. Technol.,23, 257–261.

  • Minnis, P., D. F. Young, D. P. Garber, I. Nguyen, W. L. Smith Jr., and R. Palikonda, 1998: Transformation of contrails into cirrus during SUCCESS. Geophys. Res. Lett.,25, 1157–1160.

  • Noone, K. B., J. A. Ogren, J. Heintzenberg, R. J. Charlson, and D. S. Covert, 1985: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Technol.,8, 235–244.

  • ——, K. J. Noone, J. Heintzenberg, J. Ström, and J. Ogren, 1993: In situ observations of cirrus cloud microphysical properties using the Counterflow Virtual Impactor. J. Atmos. Oceanic Technol.,10, 294–303.

  • Petzold, A., and Coauthors, 1997: Near field measurements on contrail properties from fuels with different sulfur content. J. Geophys. Res.,102, 29 867–29 880.

  • Platt, C. M. R., and J. D. Spinhirne, 1989: Optical and microphysical properties of cold cirrus clouds: Evidence for regions of small ice particles. J. Geophys. Res.,94, 11 151–11 164.

  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Reidel, 714 pp.

  • Sassen, K., and G. C. Dodd, 1989: Haze particles nucleation simulations in cirrus clouds, and applications for numerical modeling and lidar studies. J. Atmos. Sci.,46, 3005–3014.

  • Schröder, F., and J. Ström, 1997: Aircraft measurements of sub micrometer aerosol particles (>7 nm) in the midlatitude free troposphere and tropopause region. Atmos. Res.,44, 333–356.

  • ——, B. Kärcher, A. Petzold, R. Baumann, R. Busen, C. Höll, and U. Schumann, 1998: Ultrafine aerosol particles in aircraft plumes: In situ observations. Geophys. Res. Lett.,25, 2789–2792.

  • Schumann, U., 1996: On conditions for contrail formation from aircraft exhaust. Meteor. Z.,5, 4–23.

  • ——, Ed., 1997: Pollution from aircraft emissions in the North Atlantic flight corridor (POLINAT). European Commision ECSC-EC-EAEC, Brussels, Belgium, 303 pp. [Available from ulrich.schumann@dlr.de].

  • ——, and P. Wendling, 1990: Air Traffic and the Environment—Background, Tendencies and Potential Global Atmospheric Effects. Springer-Verlag, 245 pp.

  • ——, H. Schlager, F. Arnold, R. Baumann, P. Haschberger, and O. Klemm, 1998: Dilution of aircraft exhaust plumes at cruise altitudes. Atmos. Environ.,32, 3097–3103.

  • Seinfeld, J. H., and S. N. Pandis, 1997: Atmospheric Chemistry and Physics. John Wiley and Sons, 1326 pp.

  • Spinhirne, J. D., W. D. Hart, and D. P. Duda, 1998: Evolution of the morphology and microphysics of contrail cirrus from airborne remote sensing. Geophys. Res. Lett.,25, 1153–1156.

  • Starr, D. O., and S. Cox, 1985: Cirrus clouds. Part I: A cirrus cloud model. J. Atmos. Sci.,42, 2663–2681.

  • Strapp, J. W., W. R. Leaitch, and P. S. K. Liu, 1992: Hydrated and dried aerosol-size-distribution measurements from the Particle Measurement Systems FSSP-300 probe and the deiced PCASP-100X probe. J. Atmos. Oceanic Technol.,9, 548–555.

  • Ström, J., and J. Heintzenberg, 1994: Water vapor, condensed water, and crystal concentration in orographically influenced cirrus clouds. J. Atmos Sci.,51, 2368–2383.

  • ——, ——, K. J. Noone, K. B. Noone, J. A. Ogren, F. Albers, and M. Quante, 1994: Small crystals in cirrus clouds clouds: A case study of residue size distribution, cloud water content and related cloud properties. Atmos. Res.,32, 125–141.

  • ——, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, and P. Wendling, 1997: In situ observations of the microphysical properties of young cirrus clouds. J. Atmos. Sci.,54, 2542–2553.

  • Wendisch, M., A. Keil, and A. V. Korolev, 1996: FSSP characterization with monodisperse water droplets, J. Atmos. Oceanic Technol.,13, 1152–1165.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5374 1385 52
PDF Downloads 1560 395 15