Toward a Unified Parameterization of the Boundary Layer and Moist Convection. Part III: Simulations of Clear and Cloudy Convection

Cara-Lyn Lappen Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Search for other papers by Cara-Lyn Lappen in
Current site
Google Scholar
PubMed
Close
and
David A. Randall Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Search for other papers by David A. Randall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A model that employs a new form of mass-flux closure (described in Part I of this paper) is applied to a variety of clear and cloudy planetary boundary layers (PBLs) including dry convection from the Wangara Experiment, trade wind cumulus from the Barbados Oceanographic and Meteorological Experiment (BOMEX), and marine stratocumulus from the Atlantic Stratocumulus Experiment (ASTEX). For Wangara, the simulated variances and fluxes match that expected from similarity arguments, while the mean state is a little less mixed than the observations. In the BOMEX simulation, the shape and magnitude of the fluxes and the turbulence kinetic energy budget agree with LES results and observations. However, the liquid water mixing ratio is too large. This is attributed to an underprediction of the skewness. In agreement with observations from the ASTEX experiment, many of the model-simulated fields distinctly reflect a regime in transition between the trade wind cumulus and the classic stratocumulus-topped boundary layers.

In general, the simulated entrainment rate tends to be a little underpredicted in regimes where there is little cloud-top radiative cooling (Wangara and BOMEX), while it is overpredicted in regimes where this process is more critical (e.g., ASTEX). Prior work suggests that this may be related to the manner in which the pressure terms are parameterized in the model. Overall, the model is able to capture some key physical features of these PBL regimes, and appears to have the potential to represent both cloud and boundary layer processes. Thus, this approach is a first step toward unifying these processes in large-scale models.

Corresponding author address: Dr. Cara-Lyn Lappen, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: lappen@atmos.colostate.edu

Abstract

A model that employs a new form of mass-flux closure (described in Part I of this paper) is applied to a variety of clear and cloudy planetary boundary layers (PBLs) including dry convection from the Wangara Experiment, trade wind cumulus from the Barbados Oceanographic and Meteorological Experiment (BOMEX), and marine stratocumulus from the Atlantic Stratocumulus Experiment (ASTEX). For Wangara, the simulated variances and fluxes match that expected from similarity arguments, while the mean state is a little less mixed than the observations. In the BOMEX simulation, the shape and magnitude of the fluxes and the turbulence kinetic energy budget agree with LES results and observations. However, the liquid water mixing ratio is too large. This is attributed to an underprediction of the skewness. In agreement with observations from the ASTEX experiment, many of the model-simulated fields distinctly reflect a regime in transition between the trade wind cumulus and the classic stratocumulus-topped boundary layers.

In general, the simulated entrainment rate tends to be a little underpredicted in regimes where there is little cloud-top radiative cooling (Wangara and BOMEX), while it is overpredicted in regimes where this process is more critical (e.g., ASTEX). Prior work suggests that this may be related to the manner in which the pressure terms are parameterized in the model. Overall, the model is able to capture some key physical features of these PBL regimes, and appears to have the potential to represent both cloud and boundary layer processes. Thus, this approach is a first step toward unifying these processes in large-scale models.

Corresponding author address: Dr. Cara-Lyn Lappen, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: lappen@atmos.colostate.edu

Save
  • Albrecht, B. A., 1979: A model of the thermodynamic structure of the trade-wind boundary-layer. Part II. Applications. J. Atmos. Sci, 36 , 90–98.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., D. Johnson, W. H. Schubert, and A. S. Frisch, 1995: The Atlantic stratocumulus transition experiment—ASTEX. Bull. Amer. Meteor. Soc, 76 , 889–904.

    • Search Google Scholar
    • Export Citation
  • André, J. C., G. De Moor, P. Lacarrere, G. Therry, and R. Du Vachat, 1978: Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer. J. Atmos. Sci, 35 , 1861–1883.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: The interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci, 31 , 674–701.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., 1992: A model of marine boundary-layer cloudiness for mesoscale applications. J. Atmos. Sci, 49 , 1723–1744.

  • Bechtold, P., J. W. M. Cuijpers, P. Mascart, and P. Trouilhet, 1995: Modeling of trade wind cumuli with a low-order turbulence model: Toward a unified description of Cu and Sc clouds in meteorological models. J. Atmos. Sci, 52 , 455–463.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., S. K. Krueger, W. S. Lewellen, E. van Meijgaard, C-H. Moeng, D. A. Randall, A. van Ulden, and S. Wang, 1996: Modeling a stratocumulus-topped PBL: Intercomparison among different one-dimensional codes and with large eddy simulation. Bull. Amer. Meteor. Soc, 77 , 2033–2042.

    • Search Google Scholar
    • Export Citation
  • Betts, A., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc, 99 , 178–196.

  • Betts, A., 1976: Modeling subcloud layer structure and interaction with a shallow cumulus layer. J. Atmos. Sci, 33 , 2363–2382.

  • Betts, A., 1990: Diurnal variation of California coastal stratocumulus from two days of boundary layer soundings. Tellus, 42A , 302–304.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1981a: Modeling the trade wind cumulus boundary layer. Part II: High-order one-dimensional model. J. Atmos. Sci, 38 , 2414–2428.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1981b: Modeling the trade wind cumulus boundary layer. Part II: High-order one-dimensional model. J. Atmos. Sci, 38 , 2429–2439.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1982: Cloud-ensemble relations based on the gamma probability distribution for the higher order models of the planetary boundary layer. J. Atmos. Sci, 39 , 2691–2700.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and J. C. André, 1986: On the stability of the third-order turbulence closure for the modeling of the stratocumulus-topped boundary layer. J. Atmos. Sci, 43 , 1574–1581.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and R. Pincus, 1995: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part I: Synoptic setting and vertical structure. J. Atmos. Sci, 52 , 2707–2723.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., J. C. Wyngaard, and D. H. Lenschow, 1982: Marine stratocumulus layers. Part II: Turbulence budgets. J. Atmos. Sci, 39 , 818–836.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1994: Survey of perceived priority issues in the parameterizations of cloud-related processes. Quart. J. Roy. Meteor. Soc, 120 , 483–487.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and W. R. Cotton, 1983: One-dimensional simulation of the stratocumulus-capped mixed layer. Bound.-Layer Meteor, 25 , 289–321.

    • Search Google Scholar
    • Export Citation
  • Clark, R. H., A. J. Dyer, R. R. Brook, D. G. Reid, and A. J. Troup, 1971: The Wangara experiment: Boundary layer data. Tech. paper 19, Division Meteor. Phys. CSIRO, Australia.

    • Search Google Scholar
    • Export Citation
  • Cuijpers, J. W. M., and P. G. Duynkerke, 1993: Large eddy simulation of trade wind cumulus clouds. J. Atmos. Sci, 50 , 3894–3908.

  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci, 37 , 131–147.

  • de Laat, A. T. J., and P. G. Duynkerke, 1998: Analysis of ASTEX-stratocumulus observational data using mass-flux approach. Bound.-Layer Meteor, 86 , 63–87.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., and P. G. Duynkerke, 1997: Observed Lagrangian transition of stratocumulus into cumulus during ASTEX: Mean state and turbulence structure. J. Atmos. Sci, 54 , 2157–2173.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., H. Q. Zhang, and P. J. Jonker, 1995: Microphysical and turbulent structure of nocturnal stratocumulus as observed during ASTEX. J. Atmos. Sci, 52 , 2763–2777.

    • Search Google Scholar
    • Export Citation
  • Esbensen, S., 1978: Bulk thermodynamic effects and properties of small tropical cumuli. J. Atmos. Sci, 35 , 826–837.

  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev, 118 , 1483–1506.

    • Search Google Scholar
    • Export Citation
  • Hanson, H. P., 1981: On mixing by tradewind cumuli. J. Atmos. Sci, 38 , 1003–1014.

  • Harrison, E. F., F. P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res, 95 , 18 687–18 703.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth's energy balance. J. Climate, 5 , 1281–1304.

    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., 1978: An analysis of Wangara micrometeorology: Surface stresses, sensible heat, evaporation, and dewfall. NOAA Tech. Memo. ERL ARL-104, Air Resources Laboratory, Silver Spring, MD, 36 pp.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and C-H. Moeng, 1991: Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci, 48 , 1690–1698.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., 1988: Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer. J. Atmos. Sci, 45 , 2221–2250.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., and A. Bergeron, 1994: Modeling the trade cumulus boundary layer. Atmos. Res, 33 , 169–192.

  • Lappen, C-L., 1999: The unification of mass flux and higher-order closure in the simulation of boundary layer turbulence. Ph.D. thesis, Colorado State University, 330 pp.

    • Search Google Scholar
    • Export Citation
  • Lappen, C-L., and D. A. Randall, 2001a: Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model. J. Atmos. Sci., 58, 2021–2036.

    • Search Google Scholar
    • Export Citation
  • Lappen, C-L., and D. A. Randall, 2001b: Toward a unified parameterization of the boundary layer and moist convection. Part II: Lateral mass exchanges and subplume-scale fluxes. J. Atmos. Sci., 58, 2037–2051.

    • Search Google Scholar
    • Export Citation
  • Launder, 1975: On the effects of a gravitational field on the turbulent transport of heat and momentum. J. Fluid Mech, 67 , 569–581.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 1998: Large-eddy boundary layer entrainment. J. Atmos. Sci, 55 , 2645–2665.

  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc, 94 , 292–309.

  • Lumley, J. L., 1978: Computational modeling of turbulent flows. Advances in Applied Mechanics. Vol. 18. Academic Press, 123–176.

  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci, 31 , 1791–1806.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., 1984: A large-eddy simulation for the study of planetary boundary layer turbulence. J. Atmos. Sci, 41 , 2052–2062.

  • Moeng, C-H., and A. Arakawa, 1980: Numerical study of a marine subtropical stratus cloud layer and its stability. J. Atmos. Sci, 37 , 2661–2676.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and D. A. Randall, 1984: Problems in simulating the stratocumulus-topped boundary layer with a third-order closure model. J. Atmos. Sci, 41 , 1588–1600.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: Dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc, 110 , 783–820.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1989: The structure of radiatively-driven convection in stratocumulus. Quart. J. Roy. Meteor. Soc, 115 , 487–511.

  • Nitta, T., 1975: Observational determination of cloud mass flux distributions. J. Atmos. Sci, 32 , 73–91.

  • Oliver, D. A., W. S. Lewellen, and G. G. Williamson, 1978: Interaction between turbulent and radiative transport in the development of fog and low-level stratus. J. Atmos. Sci, 35 , 301–316.

    • Search Google Scholar
    • Export Citation
  • Penc, R. S., and B. Albrecht, 1987: Parametric representation of heat and moisture fluxes in cloud-topped mixed layers. Bound.-Layer Meteor, 38 , 225–248.

    • Search Google Scholar
    • Export Citation
  • Pennel, W. T., and M. A. Lemone, 1974: Experimental study of turbulence structure in the fair-weather trade wind boundary layer. J. Atmos. Sci, 31 , 1308–1323.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243 , 57–63.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci, 37 , 125–130.

  • Randall, D. A., and M. J. Suarez, 1984: On the dynamics of stratocumulus formation and dissipation. J. Atmos. Sci, 41 , 3052–3057.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Q. Shao, and C-H. Moeng, 1992: A second-order bulk boundary-layer model. J. Atmos. Sci, 49 , 1903–1923.

  • Randall, D. A., Q. Shao, and M. Branson, 1998: Representation of clear and cloudy boundary layers in climate models. Clear and Cloud Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 305–322.

    • Search Google Scholar
    • Export Citation
  • Rotta, J. C., 1951: Statistische Theorie Nichthomogener Turbulenz 2. Z. Phys, 131 , 51–77.

  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci, 52 , 650–666.

    • Search Google Scholar
    • Export Citation
  • Siems, S. T., C. S. Bretherton, M. B. Baker, S. Shy, and R. E. Breidenthal, 1990: Buoyancy reversal and cloud-top entrainment instability. Quart. J. Roy. Meteor. Soc, 116 , 705–739.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1990: Sensitivity of the Earth's radiation budget to changes in low clouds. Nature, 343 , 49–51.

  • Somméria, G., 1976: Three-dimensional simulation of turbulent processes in an undisturbed trade wind boundary layer. J. Atmos. Sci, 33 , 216–241.

    • Search Google Scholar
    • Export Citation
  • Somméria, G., and J. W. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci, 34 , 344–355.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Suarez, M. J., A. Arakawa, and D. A. Randall, 1983: The parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea. Rev, 111 , 2225–2243.

    • Search Google Scholar
    • Export Citation
  • Sun, W-Y., and Y. Ogura, 1980: Modeling the evolution of the convective planetary boundary layer. J. Atmos. Sci, 37 , 1558–1572.

  • Tiedtke, M., 1988: Parameterization of cumulus convection in large-scale models. Physically-Based Modeling and Simulation of Climate and Climate Change, M. Schlesinger, Ed., D. Reidel, 375–431.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev, 117 , 1779–1800.

    • Search Google Scholar
    • Export Citation
  • Turton, J. D., and S. Nicholls, 1987: Study of the diurnal variation of stratocumulus using a multiple mixed-layer model. Quart. J. Roy. Meteor. Soc, 113 , 969–1009.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and B. Albrecht, 1986: Stratocumulus model with an internal circulation. J. Atmos. Sci, 43 , 2374–2391.

  • Wang, S., and B. Albrecht, 1990: A mean gradient of the convective boundary layer. J. Atmos. Sci, 47 , 126–138.

  • Wang, S., and Q. Wang, 1994: Roles of drizzle in a one-dimensional third-order turbulence closure model of the nocturnal stratus-topped marine boundary layer. J. Atmos. Sci, 51 , 1559–1576.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and B. Stevens, 2000: Top-hat representation of turbulence statistics in cloud-topped boundary layers: A large eddy simulation study. J. Atmos. Sci, 57 , 423–441.

    • Search Google Scholar
    • Export Citation
  • Willis, G. E., and J. W. Deardorff, 1974: Laboratory model of the unstable planetary boundary layer. J. Atmos. Sci, 31 , 1297–1307.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and O. R. Coté, 1974: The evolution of a convective planetary boundary layer. Bound-Layer Meteor, 7 , 289–308.

    • Search Google Scholar
    • Export Citation
  • Yamada, T., and G. L. Mellor, 1975: Simulation of the Wangara atmospheric boundary layer data. J. Atmos. Sci, 32 , 2309–2329.

  • Yamada, T., and G. L. Mellor, 1979: A numerical simulation of BOMEX data using a turbulence closure model coupled with ensemble cloud relations. Quart. J. Roy. Meteor. Soc, 105 , 915–944.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., J. H. Chu, T. E. Stark, and T. Nitta, 1976: Response of deep and shallow tropical marine cumuli to large-scale processes. J. Atmos. Sci, 33 , 976–991.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., 1988: Turbulence structure of the convective boundary layer. Part II: Phoenix 78 aircraft observations of thermals and their environment. J. Atmos. Sci, 45 , 727–735.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 635 391 139
PDF Downloads 154 49 7