A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties

Kenneth Sassen Department of Meteorology, University of Utah, Salt Lake City, Utah

Search for other papers by Kenneth Sassen in
Current site
Google Scholar
PubMed
Close
and
Jennifer M. Comstock Department of Meteorology, University of Utah, Salt Lake City, Utah

Search for other papers by Jennifer M. Comstock in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In Part III of a series of papers describing the extended time high-cloud observations from the University of Utah Facility for Atmospheric Remote Sensing (FARS) supporting the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment, the visible and infrared radiative properties of cirrus clouds over Salt Lake City, Utah, are examined. Using ∼860 h of combined ruby (0.694 μm) lidar and midinfrared (9.5–11.5 μm) radiometer data collected between 1992 and 1999 from visually identified cirrus clouds, the visible optical depths τ and infrared layer emittance ϵ of the varieties of midlatitude cirrus are characterized. The mean and median values for the cirrus sample are 0.75 ± 0.91 and 0.61 for τ, and 0.30 ± 0.22 and 0.25 for ϵ. Other scattering parameters studied are the visible extinction and infrared absorption coefficients, and their ratio, and the lidar backscatter-to-extinction ratio, which has a mean value of 0.041 sr−1. Differences among cirrus clouds generated by general synoptic (e.g., jet stream), thunderstorm anvil, and orographic mechanisms are found, reflecting basic cloud microphysical effects. The authors draw parameterizations in terms of midcloud temperature Tm and physical cloud thickness Δz for ϵ and τ: both macrophysical variables are needed to adequately address the impact of the adiabatic process on ice cloud content, which modulates radiative transfer as a function of temperature. For the total cirrus dataset, the authors find ϵ = 1 − exp [−8.5 × 10−5 (Tm + 80°C) Δz]. These parameterizations, based on a uniquely comprehensive dataset, hold the potential for improving weather and climate model predictions, and satellite cloud property retrieval methods.

* Current affiliation: Pacific Northwest National Laboratory (operated by Battelle for the U.S. Department of Energy), Richland, Washington.

Corresponding author address: Kenneth Sassen, 135 S. 1460 E. (819 WBB), University of Utah, Salt Lake City, UT 84112. Email: ksassen@met.utah.edu

Abstract

In Part III of a series of papers describing the extended time high-cloud observations from the University of Utah Facility for Atmospheric Remote Sensing (FARS) supporting the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment, the visible and infrared radiative properties of cirrus clouds over Salt Lake City, Utah, are examined. Using ∼860 h of combined ruby (0.694 μm) lidar and midinfrared (9.5–11.5 μm) radiometer data collected between 1992 and 1999 from visually identified cirrus clouds, the visible optical depths τ and infrared layer emittance ϵ of the varieties of midlatitude cirrus are characterized. The mean and median values for the cirrus sample are 0.75 ± 0.91 and 0.61 for τ, and 0.30 ± 0.22 and 0.25 for ϵ. Other scattering parameters studied are the visible extinction and infrared absorption coefficients, and their ratio, and the lidar backscatter-to-extinction ratio, which has a mean value of 0.041 sr−1. Differences among cirrus clouds generated by general synoptic (e.g., jet stream), thunderstorm anvil, and orographic mechanisms are found, reflecting basic cloud microphysical effects. The authors draw parameterizations in terms of midcloud temperature Tm and physical cloud thickness Δz for ϵ and τ: both macrophysical variables are needed to adequately address the impact of the adiabatic process on ice cloud content, which modulates radiative transfer as a function of temperature. For the total cirrus dataset, the authors find ϵ = 1 − exp [−8.5 × 10−5 (Tm + 80°C) Δz]. These parameterizations, based on a uniquely comprehensive dataset, hold the potential for improving weather and climate model predictions, and satellite cloud property retrieval methods.

* Current affiliation: Pacific Northwest National Laboratory (operated by Battelle for the U.S. Department of Energy), Richland, Washington.

Corresponding author address: Kenneth Sassen, 135 S. 1460 E. (819 WBB), University of Utah, Salt Lake City, UT 84112. Email: ksassen@met.utah.edu

Save
  • Barnett, J. M., 2000: Remote sensing of midlatitude cirrus radiative properties: A seven-year climatology. Ph.D. thesis, University of Utah, 220 pp.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., A. J. Illingworth, G. M. MCFarquhar, K. A. Browning, and M. Gosset, 1995: The role of spaceborne millimeter-wave radar in the global monitoring of ice cloud. J. Appl. Meteor, 34 , 23462366.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and K. Sassen, 2001: Retrieval of cirrus cloud radiative and backscattering properties using combined lidar and infrared radiometer (LIRAD) measurements. J. Atmos. Oceanic Technol., in press.

    • Search Google Scholar
    • Export Citation
  • Cox, S. K., D. S. McDougal, D. A. Randall, and R. A. Schiffer, 1987: FIRE—The First ISCCP Regional Experiment. Bull. Amer. Meteor. Soc, 68 , 114118.

    • Search Google Scholar
    • Export Citation
  • Duffy, K. J., 1996: A radiative transfer model to analyze radiometer data in the atmospheric window. M.S. thesis, University of Utah, 94 pp.

    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., R. E. Kuehn, and R. E. Holz, 1998: Measurements of backscatter phase function and depolarization in cirrus clouds made with the University of Wisconsin High Spectral Resolution Lidar. 4th Int. Symp. on Tropospheric Profiling, Snowmass, CO.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9 , 20582082.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K-N. Liou, 1993: Parameterization of the radiative properties of clouds. J. Atmos. Sci, 50 , 20082025.

  • Fu, Q., Y. Ping, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11 , 22232237.

    • Search Google Scholar
    • Export Citation
  • Grund, C. J., and E. W. Eloranta, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cloud optical properties determined by High Spectral Resolution Lidar. Mon. Wea. Rev, 118 , 23442355.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and G. M. McFarquhar, 1996: High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci, 53 , 24242451.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and K. Sassen, 1998: Cirrus cloud simulation using explicit microphysics and radiation. Part II: Microphysics, vapor and mass budgets, and optical and radiative properties. J. Atmos. Sci, 55 , 18221845.

    • Search Google Scholar
    • Export Citation
  • Kinne, S., T. P. Ackerman, A. J. Heymsfield, F. P. J. Valero, K. Sassen, and J. D. Spinhirne, 1992: Cirrus microphysics and radiative transfer: Cloud field study on 28 October 1986. Mon. Wea. Rev, 120 , 661684.

    • Search Google Scholar
    • Export Citation
  • Liou, K-N., 1986: The influence of cirrus on weather and climate processes: A global perspective. Mon. Wea. Rev, 114 , 11671199.

  • Minnis, P., D. F. Young, K. Sassen, J. M. Alvarez, and C. J. Grund, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cirrus parameter relationships derived from satellite and lidar data. Mon. Wea. Rev, 118 , 24022425.

    • Search Google Scholar
    • Export Citation
  • Mischenko, M. L., J. W. Hovenier, and L. D. Travis, Eds.,. 2000: Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications. Academic Press, 690 pp.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., A. Macke, and Y. Liu, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci, 53 , 29672988.

    • Search Google Scholar
    • Export Citation
  • Ou, S-C., and K-N. Liou, 1995: Ice microphysics and climatic temperature feedback. Atmos. Res, 35 , 127138.

  • Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci, 30 , 11911204.

  • Platt, C. M. R., and A. C. Dilley, 1981: Remote sensing of high clouds, Part IV, Optical properties of midlatitude and tropical cirrus. J. Atmos. Sci, 38 , 10691082.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., and Harshvardhan, 1988: Temperature dependence of cirrus extinction: implications for climate feedback. J. Geophys. Res, 93 , 11 05111 058.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., J. C. Scott, and A. C. Dilley, 1987: Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus. J. Atmos. Sci, 44 , 729747.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, and J. H. Churnside, 1998: The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment. J. Atmos. Sci, 55 , 19771996.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1978: Backscattering cross sections for hydrometeors: Measurements at 6328 Angstroms. Appl. Opt, 17 , 804806.

  • Sassen, K., 1997: Contrail-cirrus and their potential for regional climate change. Bull. Amer. Meteor. Soc, 78 , 18851903.

  • Sassen, K., 2001: Cirrus clouds: A modern perspective. Cirrus, D. Lynch et al., Eds., Oxford University Press, 11–40.

  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor, 31 , 12751285.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and H. Zhao, 1995: Lidar multiple scattering in water droplet clouds: Toward an improved treatment. Opt. Rev, 2 , 394400.

  • Sassen, K., and S. Benson, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical properties derived from lidar depolarization. J. Atmos. Sci.,. 58 , 21032112.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and J. R. Campbell, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci, 58 , 481496.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., D. O'C. Starr, and T. Uttal, 1989: Mesoscale and microscale structure of cirrus clouds: Three case studies. J. Atmos. Sci, 46 , 371396.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., J. M. Comstock, Z. Wang, and G. G. Mace, 2001a: Cloud and aerosol research capabilities at FARS: The Facility for Atmospheric Remote Sensing. Bull. Amer. Meteor. Soc.,. 82 , 11191138.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., J. M. Comstock, and Z. Wang, 2001b: Parameterization of the radiative properties of midlatitude high and middle level clouds. Geophys. Res. Lett., 28, 729–732.

    • Search Google Scholar
    • Export Citation
  • Sauvage, L. H., H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, and F. Albers, 1999: Remote sensing of cirrus radiative parameters during EUCREX'94. Case study of 17 April 1995. Mon. Wea. Rev, 127 , 486503.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., and R. A. Swanson, 1981: A new look at the discrete ordinate method for radiative transfer calculations in anisotropically scattering atmospheres. J. Atmos. Sci, 38 , 387399.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S. C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt, 27 , 25022509.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S. Tsay, P. W. Stackhouse Jr., and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback. J. Atmos. Sci, 47 , 17421753.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K-N. Liou, 1995: Solar radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals. J. Atmos. Sci, 52 , 818837.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1000 571 68
PDF Downloads 240 67 7