Spiral Bands in a Simulated Hurricane. Part I: Vortex Rossby Wave Verification

Yongsheng Chen Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Yongsheng Chen in
Current site
Google Scholar
PubMed
Close
and
M. K. Yau Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by M. K. Yau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An initially axisymmetric hurricane was explicitly simulated using the high-resolution PSU–NCAR nonhydrostatic mesoscale model (MM5). Spiral potential vorticity (PV) bands that formed in the model were analyzed. It was shown that PV bands and cloud bands are strongly coupled. The PV anomalies in and at the top of the boundary layer interact with friction to produce upward motion that gives rise to the inner cloud bands. The propagation properties of the PV bands were studied and found to be consistent with predictions of vortex Rossby wave theory.

In the control simulation with full physics, continuous generation of PV through latent heat release in the eyewall and spiral rainbands maintain a “bowl-shape” PV field. Inward transport of high PV by the vortex Rossby waves and the process of nonlinear mixing tend to increase the inner-core PV and in turn intensify the hurricane. On the other hand, frictional and PV mixing processes acted linearly to spin down the hurricane to a midlevel vortex in a dry run, which indicates that a monopolar PV structure is the asymptotic stable state in the absence of condensation.

Corresponding author address: Yongsheng Chen, Dept. of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke W., Montreal, PQ H3A 2K6, Canada.Email: chenys@zephyr.meteo.mcgill.ca

Abstract

An initially axisymmetric hurricane was explicitly simulated using the high-resolution PSU–NCAR nonhydrostatic mesoscale model (MM5). Spiral potential vorticity (PV) bands that formed in the model were analyzed. It was shown that PV bands and cloud bands are strongly coupled. The PV anomalies in and at the top of the boundary layer interact with friction to produce upward motion that gives rise to the inner cloud bands. The propagation properties of the PV bands were studied and found to be consistent with predictions of vortex Rossby wave theory.

In the control simulation with full physics, continuous generation of PV through latent heat release in the eyewall and spiral rainbands maintain a “bowl-shape” PV field. Inward transport of high PV by the vortex Rossby waves and the process of nonlinear mixing tend to increase the inner-core PV and in turn intensify the hurricane. On the other hand, frictional and PV mixing processes acted linearly to spin down the hurricane to a midlevel vortex in a dry run, which indicates that a monopolar PV structure is the asymptotic stable state in the absence of condensation.

Corresponding author address: Yongsheng Chen, Dept. of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke W., Montreal, PQ H3A 2K6, Canada.Email: chenys@zephyr.meteo.mcgill.ca

Save
  • Barnes, G. M., J. F. Gamache, M. A. LeMone, and G. S. Stossmeister, 1991: A convective cell in a hurricane rainband. Mon. Wea. Rev, 119 , 776794.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure of the interior of hurricanes. J. Atmos. Sci, 54 , 703724.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., and W. T. Thompson, 1989: A vertically nested regional numerical prediction model with second-order closure physics. Mon. Wea. Rev, 117 , 23052324.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E,I. I. I., and R. T. Williams, 1989: Barotropic vortex stability to perturbations from axisymmetry. J. Atmos. Sci, 46 , 31773191.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci, 53 , 20762087.

  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev, 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and M. Lystad, 1977: The Ekman layer of a circular vortex: A numerical and theoretical study. Geophys. Norv, 31 , 116.

  • Enagonio, J., and M. T. Montgomery, 2001: Tropical cyclogenesis via convectively forced vortex Rossby waves in a shallow water primitive equation model. J. Atmos. Sci, 58 , 685705.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1987: Developing disturbances in shear. J. Atmos. Sci, 44 , 21912199.

  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci, 46 , 975990.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1984: A composite analysis of the core of a mature hurricane. Mon. Wea. Rev, 112 , 24012420.

  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev, 127 , 20442061.

  • Fung, I. Y-S., 1977: The organization of spiral rain bands in a hurricane. Ph.D. thesis, Massachusetts Institute of Technology, 140 pp. [Available from Dept. of Meteorology, MIT, Cambridge, MA 02139.].

    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Tuttle, and P. Hildebrand, 1998: Small-scale spiral bands observed in Hurricanes Andrew, Hugo, and Erin. Mon. Wea. Rev, 126 , 17491766.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev, 96 , 669700.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the fifth generation Penn State/NCAR mesoscale model (MM5). NCAR Tech Note NCAR/TN-398+STR, 138 pp.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci, 50 , 33803403.

  • Guinn, T. A., and W. H. Schubert, 1994: Reply. J. Atmos. Sci, 51 , 35453546.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc, 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. Part I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc, 121 , 821851.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1976: On the development of spiral bands in a tropical cyclone. J. Atmos. Sci, 33 , 940958.

  • Lewis, B. M., and H. F. Hawkins, 1982: Polygonal eye walls and rainbands in hurricanes. Bull. Amer. Meteor. Soc, 63 , 12941300.

  • Liu, Y., D-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew(1992). Part I: Explicit simulation and verification. Mon. Wea. Rev, 125 , 30733093.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., D-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew(1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev, 127 , 25972616.

    • Search Google Scholar
    • Export Citation
  • MacDonald, N. J., 1968: The evidence for the existence of Rossby-like waves in the hurricane vortex. Tellus, 20 , 138150.

  • May, P. T., 1996: The organization of convection in the rainbands of Tropical Cyclone Laurence. Mon. Wea. Rev, 124 , 807815.

  • May, P. T., and G. J. Holland, 1999: The role of potential vorticity generation in tropical cyclone rainbands. J. Atmos. Sci, 56 , 12241228.

    • Search Google Scholar
    • Export Citation
  • May, P. T., G. J. Holland, and W. L. Ecklund, 1994: Wind profiler observations of Tropical Storm Flo at Saipan. Wea. Forecasting, 9 , 410426.

    • Search Google Scholar
    • Export Citation
  • Melander, M. V., J. C. McWilliams, and N. J. Zabusky, 1987: Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech, 178 , 137159.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci, 45 , 16781687.

  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci, 56 , 16741687.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci, 57 , 33663387.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc, 123 , 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and C. Lu, 1997: Free waves on barotropic vortices. Part I: Eigenmode structure. J. Atmos. Sci, 54 , 18681885.

  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci, 55 , 31763207.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., H. D. Snell, and Z. Yang, 2001: Axisymmetric spin-down dynamics of hurricane-like vortices. J. Atmos. Sci, 58 , 421435.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci, 47 , 30673077.

  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev, 128 , 16531680.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., 1994: Comments on “Hurricane spiral bands.”. J. Atmos. Sci, 51 , 35433544.

  • Schubert, W. H., 1985: Wave, mean-flow interactions and hurricane development. Preprints, 16th Conf. on Hurricanes and Tropical Meteorology, Houston, TX, Amer. Meteor. Soc., 140–141.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci, 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Senn, H. V., and H. W. Hiser, 1959: On the origin of hurricane spiral rain bands. J. Meteor, 16 , 419426.

  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci, 40 , 19841998.

  • Shapiro, L. J., 1992: Hurricane vortex motion and evolution in a three-layer model. J. Atmos. Sci, 49 , 140153.

  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci, 50 , 33223335.

    • Search Google Scholar
    • Export Citation
  • Smith, G. B., and M. T. Montgomery, 1995: Vortex axisymmetrization: Dependence on azimuthal wavenumber or asymmetric radial structure changes. Quart. J. Roy. Meteor. Soc, 121 , 16151650.

    • Search Google Scholar
    • Export Citation
  • Snell, H. D., and M. T. Montgomery, 1999: Spin-down dynamics of axisymmetric hurricanes. Preprints, 23d Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 1031.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev, 124 , 849874.

    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., 1989: Azimuthal waves and symmetrization of an intense vortex. Sov. Phys. Dokl, 34 , 104106.

  • Tao, W-K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci, 4 , 3572.

  • Willoughby, H. E., 1978a: Possible mechanism for the formation of hurricane rainbands. J. Atmos. Sci, 35 , 838848.

  • Willoughby, H. E., 1978b: Vertical structure of hurricane rainbands and their interaction with the mean vortex. J. Atmos. Sci, 35 , 849858.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res, 84 , 31733183.

  • Willoughby, H. E., 1995: Mature structure and evolution. Global perspective on tropical cyclones, WMO/TD-No. 693, WMO, Geneva, Switzerland, 289 pp.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci, 41 , 31893211.

    • Search Google Scholar
    • Export Citation
  • Yau, M. K., Y. Liu, and D-L. Zhang, 1999: Numerical simulation of the inner-core structures of Hurricane Andrew (1992). Preprints, 23d Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 668–671.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev, 129 , 92107.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2209 1338 363
PDF Downloads 616 129 13