Mesovortices, Polygonal Flow Patterns, and Rapid Pressure Falls in Hurricane-Like Vortices

James P. Kossin Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by James P. Kossin in
Current site
Google Scholar
PubMed
Close
and
Wayne H. Schubert Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Wayne H. Schubert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present work considers the two-dimensional barotropic evolution of thin annular rings of enhanced vorticity embedded in nearly irrotational flow. Such initial conditions imitate the observed flows in intensifying hurricanes. Using a pseudospectral numerical model, it is found that these highly unstable annuli rapidly break down into a number of mesovortices. The mesovortices undergo merger processes with their neighbors and, depending on initial conditions, they can relax to a monopole or an asymmetric quasi-steady state. In the latter case, the mesovortices form a lattice rotating approximately as a solid body. The flows associated with such vorticity configurations consist of straight line segments that form a variety of persistent polygonal shapes.

Associated with each mesovortex is a local pressure perturbation, or mesolow. The magnitudes of the pressure perturbations can be large when the magnitude of the vorticity in the initial annulus is large. In cases where the mesovortices merge to form a monopole, dramatic central pressure falls are possible.

Corresponding author address: Dr. James P. Kossin, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: kossin@euler.atmos.colostate.edu

Abstract

The present work considers the two-dimensional barotropic evolution of thin annular rings of enhanced vorticity embedded in nearly irrotational flow. Such initial conditions imitate the observed flows in intensifying hurricanes. Using a pseudospectral numerical model, it is found that these highly unstable annuli rapidly break down into a number of mesovortices. The mesovortices undergo merger processes with their neighbors and, depending on initial conditions, they can relax to a monopole or an asymmetric quasi-steady state. In the latter case, the mesovortices form a lattice rotating approximately as a solid body. The flows associated with such vorticity configurations consist of straight line segments that form a variety of persistent polygonal shapes.

Associated with each mesovortex is a local pressure perturbation, or mesolow. The magnitudes of the pressure perturbations can be large when the magnitude of the vorticity in the initial annulus is large. In cases where the mesovortices merge to form a monopole, dramatic central pressure falls are possible.

Corresponding author address: Dr. James P. Kossin, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: kossin@euler.atmos.colostate.edu

Save
  • Black, P. G., and F. D. Marks, 1991: The structure of an eyewall meso-vortex in Hurricane Hugo (1989). Preprints, 19th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 579–582.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and F. D. Marks, 1987: On the structure of the eyewall of Hurricane Diana (1984): Comparison of radar and visual characteristics. Mon. Wea. Rev, 115 , 2542–2552.

    • Search Google Scholar
    • Export Citation
  • Bracco, A., J. C. McWilliams, G. Murante, A. Provenzale, and J. B. Weiss, 2000: Revisiting freely decaying two-dimensional turbulence at millennial resolution. Phys. Fluids, 12 , 2931–2941.

    • Search Google Scholar
    • Export Citation
  • Carnevale, G. F., P. Cavazza, P. Orlandi, and R. Purini, 1991a: An explanation for anomalous vortex merger in rotating-tank experiments. Phys. Fluids A, 3 , 1411–1415.

    • Search Google Scholar
    • Export Citation
  • Carnevale, G. F., J. C. McWilliams, Y. Pompeau, J. B. Weiss, and W. R. Young, 1991b: Evolution of vortex statistics in two-dimensional turbulence. Phys. Rev. Lett, 66 , 2735–2737.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., 1985: The stability and energetics of corotating uniform vortices. J. Fluid Mech, 157 , 95–134.

  • Dritschel, D. G., 1988: Contour surgery: A topological reconnection scheme for extended integrations using contour dynamics. J. Comput. Phys, 77 , 240–266.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., 1998: On the persistence of non-axisymmetric vortices in inviscid two-dimensional flows. J. Fluid Mech, 371 , 141–155.

    • Search Google Scholar
    • Export Citation
  • Durkin, D. R., and J. Fajans, 2000: Experiments on two-dimensional vortex patterns. Phys. Fluids, 12 , 289–293.

  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci, 54 , 1014–1026.

  • Fine, K. S., C. F. Driscoll, J. H. Malmberg, and T. B. Mitchell, 1991: Measurements of symmetric vortex merger. Phys. Rev. Lett, 67 , 588–591.

    • Search Google Scholar
    • Export Citation
  • Fine, K. S., A. C. Cass, W. G. Flynn, and C. F. Driscoll, 1995: Relaxation of 2D turbulence to vortex crystals. Phys. Rev. Lett, 75 , 3277–3280.

    • Search Google Scholar
    • Export Citation
  • Fletcher, R. D., J. R. Smith, and R. C. Bundgaard, 1961: Superior photographic reconnaissance of tropical cyclones. Weatherwise, 14 , 102–109.

    • Search Google Scholar
    • Export Citation
  • Griffiths, R. W., and E. J. Hopfinger, 1987: Coalescing of geostrophic vortices. J. Fluid Mech, 178 , 73–97.

  • Havelock, T. H., 1941: The stability of motion of rectilinear vortices in ring formation. Philos. Mag, 11 , 617–633.

  • Jin, D. Z., and D. H. E. Dubin, 1998: Regional maximum entropy theory of vortex crystal formation. Phys. Rev. Lett, 80 , 4434–4437.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci, 58 , 1079–1090.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interactions between a hurricane's primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci, 57 , 3893–3917.

    • Search Google Scholar
    • Export Citation
  • Lewis, B. M., and H. F. Hawkins, 1982: Polygonal eye walls and rainbands in hurricanes. Bull. Amer. Meteor. Soc, 63 , 1294–1300.

  • Marks, F. D. Jr, and R. A. Houze Jr., 1984: Airborne Doppler radar observations in Hurricane Debby. Bull. Amer. Meteor. Soc, 65 , 569–582.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D. Jr, and P. G. Black, 1990: Close encounter with an intense mesoscale vortex within Hurricane Hugo (September 15, 1989). Extended Abstracts, Fourth Conf. on Mesoscale Processes, Boulder, CO, Amer. Meteor. Soc., 114–115.

    • Search Google Scholar
    • Export Citation
  • Melander, M. V., N. J. Zabusky, and J. C. McWilliams, 1988: Symmetric vortex merger in two dimensions: Causes and conditions. J. Fluid Mech, 195 , 303–340.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. M. Hidalgo, and P. D. Reasor, 2000: A semi-spectral numerical method for modeling the vorticity dynamics of the near-core of hurricane-like vortices. Atmospheric Science Paper 695, Dept. of Atmospheric Science, Colorado State University, 56 pp. [Available from Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.].

    • Search Google Scholar
    • Export Citation
  • Moore, D. W., and P. G. Saffman, 1975: The density of organized vortices in a turbulent mixing layer. J. Fluid Mech, 69 , 465–473.

    • Search Google Scholar
    • Export Citation
  • Morikawa, G. K., and E. V. Swenson, 1971: Interacting motion of rectilinear geostrophic vortices. Phys. Fluids, 14 , 1058–1073.

  • Muramatsu, T., 1986: The structure of polygonal eye of a typhoon. J. Meteor. Soc. Japan, 64 , 913–921.

  • Overman, E. A., and N. J. Zabusky, 1982: Evolution and merger of isolated vortex structures. Phys. Fluids, 25 , 1297–1305.

  • Persing, J., and M. T. Montgomery, 1995: A point-vortex application to vortex stability, evolution, and statistical equilibrium. Atmospheric Science Paper 587, Dept. of Atmospheric Science, Colorado State University, 86 pp. [Available from Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.].

    • Search Google Scholar
    • Export Citation
  • Peurrung, A. J., and J. Fajans, 1993: Experimental dynamics of an annulus of vorticity in a pure electron plasma. Phys. Fluids A, 5 , 493–499.

    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., and R. Szeto, 1980: Equilibrium shapes of a pair of uniform vortices. Phys. Fluids, 23 , 2339–2342.

  • Schecter, D. A., D. H. E. Dubin, K. S. Fine, and C. F. Driscoll, 1999: Vortex crystals from 2D flow: Experiment and simulation. Phys. Fluids, 11 , 905–914.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci, 56 , 1197–1223.

    • Search Google Scholar
    • Export Citation
  • Stewart, H. J., 1943: Periodic properties of the semi-permanent atmospheric pressure systems. Quart. Appl. Math, 51 , 262–267.

  • Thomson, J. J., 1883: A Treatise on the Motion of Vortex Rings. Reprint, 1968, Dawsons of Pall Mall, 124 pp.

  • Willoughby, H. E., and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc, 77 , 543–549.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci, 39 , 395–411.

    • Search Google Scholar
    • Export Citation
  • Zabusky, N. J., and E. A. Overman, 1983: Regularization of contour dynamical algorithms. J. Comput. Phys, 52 , 351–373.

  • Zabusky, N. J., M. H. Hughes, and K. V. Roberts, 1979: Contour dynamics for the Euler equations in two dimensions. J. Comput. Phys, 30 , 96–106.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2527 1194 201
PDF Downloads 1160 304 19