Linear Stability of Modons on a Sphere

E. C. Neven Atmospheric Dynamics Group, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom, and Vortex Dynamics Group, Fluid Dynamics Laboratory, Eindhoven University of Technology, Eindhoven, Netherlands

Search for other papers by E. C. Neven in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The linear stability of two stationary dipolar modon solutions of the nondivergent barotropic vorticity equation on a rotating sphere is investigated. A numerical normal mode analysis of the linearized equation is performed by solving the eigenvalue problem in a spectral model. The modons are models of observed vortical structures in the atmosphere such as planetary waves and atmospheric blocks. The wavelike modon in an eastward zonal flow represents the class of partially localized vortical waves with phase velocities inside the Rossby wave regime. The localized modon in a westward zonal flow represents the class of desingularized point vortex pairs with phase velocities outside the Rossby wave regime. The research into the stability properties of these modons may lead to a deeper insight into the decay and persistency of planetary waves and atmospheric blocks and thereby into the low-frequency variability of the atmosphere.

The convergence of the modes with resolution is studied with the matrix method for each resolution T10–T100 and with the iterative power method for every five resolutions T80–T170 and for T341. The modes are tracked through the resolutions using correlations between eigenvectors at subsequent resolutions. The four most unstable modes of the wavelike modon are convergent over T22. For the localized modon, the most unstable mode is convergent over T66, whereas other modes appear to converge to zero growth rate over T100. Both modons are unstable with an e-folding time of several days.

The structure of the modes is studied in detail for resolution T85. The most unstable modes have their largest local amplitudes in regions with the strongest gradients of potential vorticity. The modes propagate around the amphidromic points, local centers of revolution, which characterize the topological structure of the modes. The most unstable mode of the wavelike modon has a tripolar structure and propagates unhindered across the boundary circle between the inner and outer region of the modon. The most unstable mode of the localized modon has a quadrupolar structure and propagates north and south of the boundary circle, which is a critical line and an impenetrable barrier. The modons are representatives of two different classes of vortical structures and their quite distinct mode structures can be understood using the refractive index interpretation.

The Eliassen–Palm theorem applied to modes as perturbations on modons leads to a condition on the mean spectral wavenumber for an unstable mode: the barotropic wedge of instability in the diagram of perturbation relative vorticity versus perturbation streamfunction. A causal argument regarding the time required for an instability to radiate propagating waves leads to the phase speed condition for a global propagating mode: the spatial extent of the mode is related to the ratio of its e-folding time and oscillation period. These theoretical results are supported by high-resolution numerical results: wavelike modons have localized (trapped) modes, whereas localized modons have all but one wavelike (radiating) mode. The localized modon has a single isolated unstable mode with an additional continuum of propagating neutral modes. For both modons, the most unstable mode propagates eastward between the cells in the inner region and westward along the boundary circle in the outer region.

Corresponding author address: Dr. E. C. Neven, Vortex Dynamics Group, Fluid Dynamics Laboratory, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands. Email: e.c.neven@tue.nl

Abstract

The linear stability of two stationary dipolar modon solutions of the nondivergent barotropic vorticity equation on a rotating sphere is investigated. A numerical normal mode analysis of the linearized equation is performed by solving the eigenvalue problem in a spectral model. The modons are models of observed vortical structures in the atmosphere such as planetary waves and atmospheric blocks. The wavelike modon in an eastward zonal flow represents the class of partially localized vortical waves with phase velocities inside the Rossby wave regime. The localized modon in a westward zonal flow represents the class of desingularized point vortex pairs with phase velocities outside the Rossby wave regime. The research into the stability properties of these modons may lead to a deeper insight into the decay and persistency of planetary waves and atmospheric blocks and thereby into the low-frequency variability of the atmosphere.

The convergence of the modes with resolution is studied with the matrix method for each resolution T10–T100 and with the iterative power method for every five resolutions T80–T170 and for T341. The modes are tracked through the resolutions using correlations between eigenvectors at subsequent resolutions. The four most unstable modes of the wavelike modon are convergent over T22. For the localized modon, the most unstable mode is convergent over T66, whereas other modes appear to converge to zero growth rate over T100. Both modons are unstable with an e-folding time of several days.

The structure of the modes is studied in detail for resolution T85. The most unstable modes have their largest local amplitudes in regions with the strongest gradients of potential vorticity. The modes propagate around the amphidromic points, local centers of revolution, which characterize the topological structure of the modes. The most unstable mode of the wavelike modon has a tripolar structure and propagates unhindered across the boundary circle between the inner and outer region of the modon. The most unstable mode of the localized modon has a quadrupolar structure and propagates north and south of the boundary circle, which is a critical line and an impenetrable barrier. The modons are representatives of two different classes of vortical structures and their quite distinct mode structures can be understood using the refractive index interpretation.

The Eliassen–Palm theorem applied to modes as perturbations on modons leads to a condition on the mean spectral wavenumber for an unstable mode: the barotropic wedge of instability in the diagram of perturbation relative vorticity versus perturbation streamfunction. A causal argument regarding the time required for an instability to radiate propagating waves leads to the phase speed condition for a global propagating mode: the spatial extent of the mode is related to the ratio of its e-folding time and oscillation period. These theoretical results are supported by high-resolution numerical results: wavelike modons have localized (trapped) modes, whereas localized modons have all but one wavelike (radiating) mode. The localized modon has a single isolated unstable mode with an additional continuum of propagating neutral modes. For both modons, the most unstable mode propagates eastward between the cells in the inner region and westward along the boundary circle in the outer region.

Corresponding author address: Dr. E. C. Neven, Vortex Dynamics Group, Fluid Dynamics Laboratory, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands. Email: e.c.neven@tue.nl

Save
  • Anderson, J. L., 1991: The robustness of barotropic unstable modes in a zonally varying atmosphere. J. Atmos. Sci, 48 , 23932410.

  • Anderson, J. L., 1992a: Barotropic stationary states and persistent anomalies in the atmosphere. J. Atmos. Sci, 49 , 17091722.

  • Anderson, J. L., 1992b: The instability of finite amplitude Rossby waves on the infinite β-plane. Geophys. Astrophys. Fluid Dyn, 63 , 127.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1983: A conservation law for small-amplitude quasi-geostrophic disturbances on a zonally asymmetric basic flow. J. Atmos. Sci, 40 , 8590.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1984: On the existence of nonzonal flows satisfying sufficient conditions for stability. Geophys. Astrophys. Fluid Dyn, 28 , 243256.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci, 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978: Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axisymmetric flows in compressible atmospheres. J. Atmos. Sci, 35 , 175185.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Arnol'd, V. I., 1965: Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Sov. Math. Dokl, 6 , 773777. First published in Dokl. Akad. Nauk. SSSR,162, 975–978, 1965.

    • Search Google Scholar
    • Export Citation
  • Arnol'd, V. I., 1969: On a a priori estimate in the theory of hydrodynamical stability. Amer. Math. Soc. Transl. Series 2, 79 , 267269. First published in Izv. Vyssh. Uchebn. Zaved. Matematika,54, 3–5, 1966.

    • Search Google Scholar
    • Export Citation
  • Arnol'd, V. I., 1989: Mathematical Methods of Classical Mechanics. Springer-Verlag, 516 pp.

  • Baines, P. G., 1976: The stability of planetary waves on a sphere. J. Fluid Mech, 73 , 193213.

  • Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.

  • Benjamin, T. B., 1972: The stability of solitary waves. Proc. Roy. Soc. London, 328A , 153183.

  • Benzi, R., S. Pierini, A. Vulpiani, and E. Salusti, 1982: On nonlinear hydrodynamics stability of planetary vortices. Geophys. Astrophys. Fluid Dyn, 20 , 293306.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1968: On the stability of quasi-geostrophic flow. J. Atmos. Sci, 25 , 929931.

  • Boyd, J. P., 1976: The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationships of eddy fluxes of energy, heat and momentum. J. Atmos. Sci, 33 , 22852291.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 1994: Nonlocal modons on the beta-plane. Geophys. Astrophys. Fluid Dyn, 75 , 163182.

  • Boyd, J. P., 1998: Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics: Generalized Solitons and Hyperasymptotic Perturbation Theory. Kluwer, 610 pp.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci, 40 , 16891708.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and J. D. Opsteegh, 1989: Free solutions of the barotropic vorticity equation. J. Atmos. Sci, 46 , 17991814.

  • Branstator, G., and I. Held, 1995: Westward propagating normal modes in the presence of stationary background waves. J. Atmos. Sci, 52 , 247262.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., K. Haines, and J. C. Marshall, 1989: A theoretical and diagnostic study of solitary waves and atmospheric blocking. J. Atmos. Sci, 46 , 20632078.

    • Search Google Scholar
    • Export Citation
  • Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang, 1987: Spectral Methods in Fluid Dynamics. Springer-Verlag, 557 pp.

  • Carnevale, G. F., and T. G. Shepherd, 1990: On the interpretation of Andrews' theorem. Geophys. Astrophys. Fluid Dyn, 51 , 117.

  • Chaplygin, S. A., 1899: On a pulsating cylindrical vortex. Trans. Phys. Sect. Imp. Moscow Soc. Friends Nat. Sci, 10 , 1322. Also published 1948 (in Russian), Collected Works, Vol. 2, 138–154.

    • Search Google Scholar
    • Export Citation
  • Chaplygin, S. A., 1903: One case of vortex motion in fluid. Trans. Phys. Sect. Imp. Moscow Soc. Friends Nat. Sci, 11 , 1114. Also published 1948 (in Russian), Collected Works, Vol. 2, 155–165.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci, 36 , 12051216.

  • Cho, J. Y-K., and L. M. Polvani, 1996: The emergence of jets and vortices in freely-evolving, shallow-water turbulence on a sphere. Phys. Fluids, 8 , 15311552.

    • Search Google Scholar
    • Export Citation
  • Coaker, S. A., 1977: The stability of a Rossby wave. Geophys. Astrophys. Fluid Dyn, 9 , 117.

  • Deem, G. S., and N. J. Zabusky, 1978: Vortex waves: Stationary ‘V states’, interactions, recurrence and breaking. Phys. Rev. Lett, 40 , 859862.

    • Search Google Scholar
    • Export Citation
  • Drazin, P. G., and W. H. Reid, 1981: Hydrodynamic Stability. Cambridge University Press, 527 pp.

  • Dritschel, D. G., 1989: Contour dynamics and contour surgery: Numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows. Comput. Phys. Rep, 10 , 77146.

    • Search Google Scholar
    • Export Citation
  • Dymnikov, V. P., and A. N. Filatov, 1990: Stability of large-scale atmospheric processes (in Russian). Gidrometeoizdnt, 236 pp. First published (in Russian) in Department of Numerical Mathematics, USSR Academy of Sciences, 190 pp.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J. Jr, B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci, 37 , 26002616.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ, 22 , 123.

  • Farrell, B. F., 1988: Optimal excitation of neutral Rossby waves. J. Atmos. Sci, 45 , 163172.

  • Fjørtoft, R., 1953: On the changes in the spectral distribution of the kinetic energy for two-dimensional nondivergent flow. Tellus, 5 , 225230.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., and K. Haines, 1994: The decay of modons due to Rossby wave radiation. Phys. Fluids, 6 , 34873497.

  • Flierl, G. R., V. D. Larichev, J. C. McWilliams, and G. M. Reznik, 1980: The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Oceans, 5 , 141.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., M. E. Stern, and J. A. Whitehead, Jr., 1983: The physical significance of modons: Laboratory experiments and general integral constraints. Dyn. Atmos. Oceans, 7 , 233263.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1982: A unified three-dimensional instability theory of the onset of blocking and cyclogenesis. J. Atmos. Sci, 39 , 969987.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1983a: Disturbances and eddy fluxes in Northern Hemisphere flows: Instability of three-dimensional January and July flows. J. Atmos. Sci, 40 , 836855.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1983b: A unified three-dimensional instability theory of the onset of blocking and cyclogenesis. II: Teleconnection patterns. J. Atmos. Sci, 40 , 25932609.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and R. C. Bell, 1987: Teleconnection patterns and the roles of baroclinic, barotropic and topographic instability. J. Atmos. Sci, 44 , 22002218.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1974: The stability of planetary waves on an infinite β-plane. J. Geophys. Fluid Dyn, 6 , 2947.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Glendinning, P., 1994: Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations. Cambridge University Press, 388 pp.

    • Search Google Scholar
    • Export Citation
  • Goldhirsch, I., S. A. Orszag, and B. K. Maulik, 1987: An efficient method for computing leading eigenvalues and eigenvectors of large asymmetric matrices. J. Sci. Comput, 2 , 3358.

    • Search Google Scholar
    • Export Citation
  • Haines, K., and P. Malanotte-Rizzoli, 1991: Isolated anomalies in westerly jet streams: A unified approach. J. Atmos. Sci, 48 , 510526.

    • Search Google Scholar
    • Export Citation
  • Holm, D. D., J. E. Marsden, T. Ratiu, and A. Weinstein, 1985: Nonlinear stability of fluid and plasma equilibria. Phys. Rep, 123 , 1116.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1973: Stability of the Rossby–Haurwitz wave. Quart. J. Roy. Meteor. Soc, 99 , 723745.

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci, 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., A. J. Simmons, and D. G. Andrews, 1977: Energy dispersion in a barotropic atmosphere. Quart. J. Roy. Meteor. Soc, 103 , 553567.

    • Search Google Scholar
    • Export Citation
  • Jackson, E. A., 1990: Perspectives of Nonlinear Dynamics 2. Cambridge University Press, 633 pp.

  • Jackson, E. A., 1991: Perspectives of Nonlinear Dynamics 1. Cambridge University Press, 496 pp.

  • Juckes, M. N., 1987: Studies of stratospheric dynamics. Ph.D. thesis, University of Cambridge, Cambridge, United Kingdom, 162 pp.

  • Juckes, M. N., and M. E. McIntyre, 1987: A high resolution, one-layer model of breaking planetary waves in the stratosphere. Nature, 328 , 590596.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1983: Rossby-wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7 , 111125.

  • Kida, S., 1981: Motion of an elliptic vortex in a uniform shear flow. J. Phys. Soc. Japan, 50 , 35173520.

  • Killworth, P. D., and M. E. McIntyre, 1985: Do Rossby-wave critical layers absorb, reflect, or overreflect? J. Fluid Mech, 161 , 449492.

    • Search Google Scholar
    • Export Citation
  • Kirchhoff, G., 1876: Vorlesungen über Mathematische Physik: Mechanik. Teubner, 466 pp.

  • Krauss, W., 1970: Methods and Results of Theoretical Oceanography. Vol. 1. Dynamics of the Homogeneous and the Quasihomogeneous Ocean. Gebrüder Borntraeger, 302 pp.

    • Search Google Scholar
    • Export Citation
  • Lamb, H., 1932: Hydrodynamics. 6th ed. Cambridge University Press, 738 pp.

  • Larichev, V. D., and G. M. Reznik, 1976: Two-dimensional Rossby soliton: An exact solution. POLYMODE News,19, 3,6 pp.

  • LeBlond, P. H., and L. A. Mysak, 1989: Waves in the Ocean. 1st ed. Elsevier, 602 pp.

  • Legras, B., and M. Ghil, 1985: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci, 42 , 433471.

    • Search Google Scholar
    • Export Citation
  • Li, T. Y., Z. Zeng, and L. Cong, 1992: Solving eigenvalue problems of real nonsymmetric matrices with real homotopies. SIAM J. Numer. Anal, 29 , 229248.

    • Search Google Scholar
    • Export Citation
  • Lighthill, M. J., 1978: Waves in Fluids. Cambridge University Press, 504 pp.

  • Longuet-Higgins, M. S., 1964: Planetary waves on a rotating sphere. I. Proc. Roy. Soc. London, 279A , 446473.

  • Lorenz, E. N., 1972: Barotropic instability of Rossby wave motion. J. Atmos. Sci, 29 , 258269.

  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci, 27 , 871883.

  • McIntyre, M. E., and M. A. Weissman, 1978: On radiating instabilities and resonant overreflection. J. Atmos. Sci, 35 , 11901198.

  • McIntyre, M. E., and T. G. Shepherd, 1987: An exact local conservation theorem for finite-amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and on Arnol'd's stability theorems. J. Fluid Mech, 181 , 527565.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and W. A. Norton, 2000: Potential-vorticity inversion on a hemisphere. J. Atmos. Sci, 57 , 12141235.

  • McWilliams, J. C., 1980: An application of equivalent modons to atmospheric blocking. Dyn. Atmos. Oceans, 5 , 4366.

  • McWilliams, J. C., G. R. Flierl, V. D. Larichev, and G. M. Reznik, 1981: Numerical studies of barotropic modons. Dyn. Atmos. Oceans, 5 , 219238.

    • Search Google Scholar
    • Export Citation
  • Meleshko, V. V., and G. J. F. van Heijst, 1994: On Chaplygin's investigations of two-dimensional vortex structures in an inviscid fluid. J. Fluid Mech, 272 , 157182.

    • Search Google Scholar
    • Export Citation
  • Mied, R. P., 1978: The instabilities of finite-amplitude barotropic Rossby waves. J. Fluid Mech, 86 , 225246.

  • Moore, D. W., and P. G. Saffman, 1971: Structure of a line vortex in an imposed strain. Aircraft Wake Turbulence and its Detection, J. H. Olsen, A. Goldburg, and M. Rogers, Eds., Plenum Press, 339–354.

    • Search Google Scholar
    • Export Citation
  • Morrison, P. J., 1994: Hamiltonian description of the ideal fluid. Geophysical Fluid Dynamics, R. Salmon and B. Ewing-Deremer, Eds., Woods Hole Oceanographic Institute Tech. Rep. WHOI-94-12, 17–110.

    • Search Google Scholar
    • Export Citation
  • Morrison, P. J., 1998: Hamiltonian description of an ideal fluid. Rev. Mod. Phys, 70 , 467521.

  • Neven, E. C., 1992: Quadrupole modons on a sphere. Geophys. Astrophys. Fluid Dyn, 65 , 105126.

  • Neven, E. C., 1993: Modons on a sphere. Ph.D. thesis, Rijksuniversiteit Utrecht, Utrecht, The Netherlands, 175 pp.

  • Neven, E. C., 1994a: Modons in shear flow on a sphere. Geophys. Astrophys. Fluid Dyn, 74 , 5171.

  • Neven, E. C., 1994b: Baroclinic modons on a sphere. J. Atmos. Sci, 51 , 14471464.

  • Neven, E. C., 1994c: Determination of the linear stability of modons on a sphere by high-truncation time integrations. Modelling of Oceanic Vortices, G. J. F. van Heijst, Ed., Verhandelingen Koninklijke Nederlandse Academie van Wetenschappen (KNAW), 113–122.

    • Search Google Scholar
    • Export Citation
  • Nof, D., 1990: Modons and monopoles on a γ-plane. Geophys. Astrophys. Fluid Dyn, 52 , 7187.

  • Norton, W. A., 1988: Balance and potential vorticity inversion in atmospheric dynamics. Ph.D. thesis, University of Cambridge, Cambridge, United Kingdom, 162 pp.

    • Search Google Scholar
    • Export Citation
  • Nozawa, T., and S. Yoden, 1997: Formation of zonal band structure in forced two-dimensional turbulence on a rotating sphere. Phys. Fluids, 9 , 20812093.

    • Search Google Scholar
    • Export Citation
  • Nycander, 1992: Refutation of stability proofs for dipole vortices. Phys. Fluids, 4A , 467476.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer-Verlag, 710 pp.

  • Pierrehumbert, R. T., and P. Malguzzi, 1984: Forced coherent structures and local multiple equilibria in a barotropic atmosphere. J. Atmos. Sci, 41 , 246257.

    • Search Google Scholar
    • Export Citation
  • Rankine, W. J. M., 1858: A Manual of Applied Mechanics. Griffin, 676 pp.

  • Read, P. L., P. B. Rhines, and A. A. White, 1986: Geostrophic scatter diagrams and potential vorticity dynamics. J. Atmos. Sci, 43 , 32263240.

    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., 1992: Vortex Dynamics. Cambridge University Press, 311 pp.

  • Shepherd, T. G., 1993: A unified theory of available potential energy. Atmos.– Ocean, 31 , 126.

  • Shepherd, T. G., 1994: Applications of Hamiltonian theory to GFD. Geophysical Fluid Dynamics, R. Salmon and B. Ewing-Deremer, Eds., Woods Hole Oceanographic Institute Tech. Rep. WHOI-94-12, 113–152.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci, 40 , 13631392.

    • Search Google Scholar
    • Export Citation
  • Skiba, Y. N., 1990: Mathematical problems of the dynamics of a viscous barotropic fluid on a rotating sphere. Ph.D. thesis, Indian Institute of Tropical Meteorology, 211 pp. First published by Department of Computational Mathematics, USSR Academy of Sciences, Moscow, 178 pp (in Russian), 1989.

    • Search Google Scholar
    • Export Citation
  • Skiba, Y. N., 1993: Dynamics of perturbations of the Rossby–Haurwitz wave and the Verkley modon. Atmósfera, 6 , 87125.

  • Skiba, Y. N., 1994: On the long-time behavior of solutions to the barotropic atmosphere model. Geophys. Astrophys. Fluid Dyn, 78 , 143167.

    • Search Google Scholar
    • Export Citation
  • Skiba, Y. N., 1998: Spectral approximation in the numerical stability study of nondivergent viscous flows on a sphere. Numer. Methods Partial Differ. Equations, 14 , 143157.

    • Search Google Scholar
    • Export Citation
  • Skiba, Y. N., 2000: On the normal mode instability of harmonic waves on a sphere. Geophys. Astrophys. Fluid Dyn, 92 , 115127.

  • Skiba, Y. N., and J. Adem, 1998: On the linear stability study of zonal incompressible flows on a sphere. Numer. Methods Partial Differ. Equations, 14 , 649665.

    • Search Google Scholar
    • Export Citation
  • Skiba, Y. N., and A. Y. Strelkov, 2000a: On the normal mode instability of modons and Wu–Verkley waves. Geophys. Astrophys. Fluid Dyn, 93 , 3954.

    • Search Google Scholar
    • Export Citation
  • Skiba, Y. N., and A. Y. Strelkov, 2000b: Linear instability conditions for steady waves in ideal incompressible fluid on a rotating sphere. Fifth Int. Conf. on Numerical Aspects of Wave Propagation, A. Bermúdez, et al. Eds., Philadelphia, PA, Society for Industrial and Applied Mathematics,. 369373.

    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1975: Minimal properties of planetary eddies. J. Mar. Res, 33 , 113.

  • Swaters, G. E., 1994: On stationary equivalent modons in an eastward flow. Phys. Fluids, 6 , 118123.

  • Swenson, M., 1987: Instability of equivalent-barotropic riders. J. Phys. Oceanogr, 17 , 492506.

  • Talagrand, O., and P. Courtier, 1987a: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc, 113 , 13111328.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., and P. Courtier, 1987b: Variational assimilation of meteorological observations with the adjoint vorticity equation. II: Numerical results. Quart. J. Roy. Meteor. Soc, 113 , 13291347.

    • Search Google Scholar
    • Export Citation
  • Thompson, P. D., 1982: A generalized class of exact time-dependent solutions of the vorticity equation for nondivergent barotropic flow. Mon. Wea. Rev, 110 , 13211324.

    • Search Google Scholar
    • Export Citation
  • Tribbia, J. J., 1984: Modons in spherical geometry. Geophys. Astrophys. Fluid Dyn, 30 , 131168.

  • Verkley, W. T. M., 1984: The construction of barotropic modons on a sphere. J. Atmos. Sci, 41 , 24922504.

  • Verkley, W. T. M., 1987: Stationary barotropic modons in westerly background flows. J. Atmos. Sci, 44 , 23832398.

  • Verkley, W. T. M., 1990: Modons with uniform absolute vorticity. J. Atmos. Sci, 47 , 727745.

  • Verkley, W. T. M., 1993: A numerical method for finding form-preserving free solutions of the barotropic vorticity equation on a sphere. J. Atmos. Sci, 50 , 14881503.

    • Search Google Scholar
    • Export Citation
  • Verkley, W. T. M., 1994: Tropopause dynamics and planetary waves. J. Atmos. Sci, 51 , 509529.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev, 109 , 785812.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 908 254 31
PDF Downloads 181 58 3