Diagnosis of Dynamics and Energy Balance in the Mesosphere and Lower Thermosphere

Xun Zhu Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland

Search for other papers by Xun Zhu in
Current site
Google Scholar
PubMed
Close
,
Jeng-Hwa Yee Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland

Search for other papers by Jeng-Hwa Yee in
Current site
Google Scholar
PubMed
Close
, and
Elsayed R. Talaat Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland

Search for other papers by Elsayed R. Talaat in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A diagnostic technique has been developed to consistently derive all the dynamical and chemical tracer fields based on one or a few well-measured fields such as temperature and ozone distributions. The technique is based on the new Johns Hopkins University/Applied Physics Laboratory (JHU/APL) globally balanced 2D diagnostic model that couples the dynamics with photochemistry. This model is especially useful for studying the mesosphere and lower thermosphere where dynamics, radiation, and photochemistry strongly interact. The novelty of the diagnostic model is to derive the wave drag and eddy diffusion coefficient directly from the better-defined thermal forcing with its major contributions derived from the zonal mean components. The latter is also affected by the advective and diffusive transports. The derived tracer distributions together with input field(s) provide the necessary radiative and chemical heating rates for the calculation of the thermal forcing.

Two numerical experiments with different input fields are conducted with the JHU/APL 2D diagnostic model. Using the COSPAR International Reference Atmosphere 1986 model atmosphere as the input temperature field, the first experiment produces a meridional velocity of ∼10 m s−1 and a peak ozone mixing ratio of ∼2 ppmv near the mesopause. The second experiment incorporates additional ozone information obtained from the High Resolution Doppler Imager (HRDI) measurements as part of the input fields. Monthly zonal mean HRDI ozone (∼4–8 ppmv near the mesopause) is merged with the lower values of model climatology using statistical scaling. In this second experiment, the diagnostic model produces the enhancements in radiative and chemical heating, wave drag, residual circulation, and eddy diffusion coefficient that are necessary to maintain the high input ozone concentration near the mesopause.

Corresponding author address: Dr. Xun Zhu, The Johns Hopkins University Applied Physics Lab, 11100 Johns Hopkins Rd., Laurel, MD 20723-6099. Email: xun.zhu@jhuapl.edu

Abstract

A diagnostic technique has been developed to consistently derive all the dynamical and chemical tracer fields based on one or a few well-measured fields such as temperature and ozone distributions. The technique is based on the new Johns Hopkins University/Applied Physics Laboratory (JHU/APL) globally balanced 2D diagnostic model that couples the dynamics with photochemistry. This model is especially useful for studying the mesosphere and lower thermosphere where dynamics, radiation, and photochemistry strongly interact. The novelty of the diagnostic model is to derive the wave drag and eddy diffusion coefficient directly from the better-defined thermal forcing with its major contributions derived from the zonal mean components. The latter is also affected by the advective and diffusive transports. The derived tracer distributions together with input field(s) provide the necessary radiative and chemical heating rates for the calculation of the thermal forcing.

Two numerical experiments with different input fields are conducted with the JHU/APL 2D diagnostic model. Using the COSPAR International Reference Atmosphere 1986 model atmosphere as the input temperature field, the first experiment produces a meridional velocity of ∼10 m s−1 and a peak ozone mixing ratio of ∼2 ppmv near the mesopause. The second experiment incorporates additional ozone information obtained from the High Resolution Doppler Imager (HRDI) measurements as part of the input fields. Monthly zonal mean HRDI ozone (∼4–8 ppmv near the mesopause) is merged with the lower values of model climatology using statistical scaling. In this second experiment, the diagnostic model produces the enhancements in radiative and chemical heating, wave drag, residual circulation, and eddy diffusion coefficient that are necessary to maintain the high input ozone concentration near the mesopause.

Corresponding author address: Dr. Xun Zhu, The Johns Hopkins University Applied Physics Lab, 11100 Johns Hopkins Rd., Laurel, MD 20723-6099. Email: xun.zhu@jhuapl.edu

Save
  • Alexander, M. J., 1998: Interpretations of observed climatological patterns in stratospheric gravity wave variance. J. Geophys. Res, 103 , . (D8),. 86278640.

    • Search Google Scholar
    • Export Citation
  • Allen, M., 1986: A new source of ozone in the terrestrial upper atmosphere? J. Geophys. Res, 91 , 28442848.

  • Allen, M., J. I. Lunine, and Y. L. Yung, 1984: The vertical distribution of ozone in the mesosphere and lower thermosphere. J. Geophys. Res, 89 , 48414872.

    • Search Google Scholar
    • Export Citation
  • Apruzese, J. P., M. R. Schoeberl, and D. F. Strobel, 1982: Parameterization of IR cooling in a middle atmosphere dynamics model. Pt. 1: Effects on the zonally averaged circulation. J. Geophys. Res, 87 , 89518966.

    • Search Google Scholar
    • Export Citation
  • Atreya, S. K., 1981: Measurements of minor species (H2, Cl, O3, NO) in the earth's atmosphere by the occultation technique. Adv. Space Res, 1 , 127141.

    • Search Google Scholar
    • Export Citation
  • Fleming, E. L., S. Chandra, J. J. Barnett, and M. Corney, 1990: Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude. Adv. Space Res, 10 , 1159.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., 1991: Parameterization of planetary wave breaking in the middle atmosphere. J. Atmos. Sci, 48 , 14051419.

  • Hayashi, Y., and T. Matsuno, 1984: Internal gravity wave enhancement by the chemical heat release due to oxygen recombination. Dynamics of the Middle Atmosphere, J. R. Holton and T. Matsuno, Eds., Terrapub, 141–160.

    • Search Google Scholar
    • Export Citation
  • Hays, P. B., V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, 1993: The high-resolution Doppler imager on the upper atmosphere research satellite. J. Geophys. Res, 98 , 1071210723.

    • Search Google Scholar
    • Export Citation
  • Hays, P. B., and Coauthors. . 1994: Observations of the diurnal tide from space. J. Atmos. Sci, 51 , 30773093.

  • Holton, J. R., and X. Zhu, 1984: A further study of gravity wave induced drag and diffusion in the mesosphere. J. Atmos. Sci, 41 , 26532662.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and S. Solomon, 1986: On the radiative balance of the stratosphere. J. Atmos. Sci, 43 , 15251534.

  • Leovy, C. B., 1966: Photochemical destabilization of gravity waves near the mesopause. J. Atmos. Sci, 23 , 223232.

  • Lieberman, R. S., 1997: Long-term variations of zonal mean winds and (1,1) driving in the equatorial lower thermosphere. J. Atmos. Sol.–Terr. Phys, 59 , 14831490.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress due to gravity wave and tidal breakdown. J. Geophys. Res, 86 , 97079714.

  • Lopez-Puertas, M., M. A. Lopez-Valverde, and F. W. Taylor, 1992: Vibrational temperature and radiative cooling of the CO2 15 μm bands in the middle atmosphere. Quart. J. Roy. Meteor. Soc, 118 , 499532.

    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., 1999: Satellite observations of mesospheric ozone. Ph.D. thesis, University of Michigan, 154 pp.

  • Matsuno, T., 1982: Quasi-one-dimensional model of the middle atmosphere circulation interacting with internal gravity waves. J. Meteor. Soc. Japan, 60 , 215226.

    • Search Google Scholar
    • Export Citation
  • Mlynczak, M. G., and S. Solomon, 1993: A detailed evaluation of the heating efficiency in the middle atmosphere. J. Geophys. Res, 98 , (D6),. 1051710541.

    • Search Google Scholar
    • Export Citation
  • Mlynczak, M. G., C. J. Mertens, R. R. Garcia, and R. W. Portmann, 1999: A detailed evaluation of the stratospheric heat budget. Pt. II: Global radiation balance and diabatic circulation. J. Geophys. Res, 104 , 60396066.

    • Search Google Scholar
    • Export Citation
  • Ortland, D. A., P. B. Hays, W. R. Skinner, and J. H. Yee, 1998: Remote sensing of mesospheric temperature and O2(1Σ) band volume emission rates with the high resolution Doppler imager. J. Geophys. Res, 103 , 18211835.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, J. M. Russell III, A. Roche, and J. W. Waters, 1998: Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data. J. Atmos. Sci, 55 , 163185.

    • Search Google Scholar
    • Export Citation
  • Riegler, G. R., S. K. Atreya, T. M. Donahue, S. C. Liu, B. Wasser, and J. F. Drake, 1977: UV stellar occultation measurements of nighttime equatorial ozone. Geophys. Res. Lett, 4 , 145148.

    • Search Google Scholar
    • Export Citation
  • Rosenfield, J. E., M. R. Schoeberl, and M. Geller, 1987: A computation of the stratospheric diabatic circulation using an accurate radiative transfer model. J. Atmos. Sci, 44 , 859876.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., and J. R. Holton, 1993: Estimates of the stratospheric residual circulation using the downward control principle. J. Geophys. Res, 98 , 1046510479.

    • Search Google Scholar
    • Export Citation
  • Shved, G. M., L. E. Khvorostovskaya, I. Yu Potekhin, A. I. Dem'Yanikov, A. A. Kutepov, and V. I. Fomichev, 1991: Measurement of the quenching rate constant of CO2(0110)–O collisions and its significance for the thermal regime and radiation in the lower thermosphere. Izv., Atmos. Oceanic Phys, 27 , 295299.

    • Search Google Scholar
    • Export Citation
  • Summers, M. E., and Coauthors. . 1997a: Implications of satellite OH observations for middle atmosphere H2O and ozone. Science, 277 , 19671976.

    • Search Google Scholar
    • Export Citation
  • Summers, M. E., D. E. Siskind, J. T. Bacmeister, R. R. Conway, S. E. Zasadil, and D. F. Strobel, 1997b: Seasonal variation of middle atmospheric CH4 and H2O with a new chemical–dynamical model. J. Geophys. Res, 102 , . (D3),. 35033526.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., and Y. Murayama, 1990: Seasonal variation of momentum flux in the mesosphere observed with the MU radar. Geophys. Res. Lett, 17 , 725728.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., and I. M. Reid, 1983: HF Doppler measurements of mesospheric gravity wave momentum fluxes. J. Atmos. Sci, 40 , 13211333.

    • Search Google Scholar
    • Export Citation
  • Weeks, L. H., R. E. Good, J. S. Randhawa, and H. Trinks, 1978: Ozone measurements in the stratosphere, mesosphere, and lower thermosphere during Aladdin 74. J. Geophys. Res, 83 , 978982.

    • Search Google Scholar
    • Export Citation
  • Wintersteiner, P. P., R. H. Picard, R. D. Sharma, J. R. Winick, and R. A. Joseph, 1992: Line-by-line radiative excitation model for the non-equilibrium atmosphere: Application to CO2 15 μm emission. J. Geophys. Res, 97 , 1808318117.

    • Search Google Scholar
    • Export Citation
  • Zhou, D. K., M. G. Mlynczak, G. E. Bingham, J. O. Wise, and R. M. Nadile, 1998: CIRRIS-1A limb spectral measurements of mesospheric 9.6-μm airglow and ozone. Geophys. Res. Lett, 25 , 643646.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., 1993: Radiative damping revisited: Parameterization of damping rate in the middle atmosphere. J. Atmos. Sci, 50 , 30083021.

  • Zhu, X., 1994: An accurate and efficient radiation algorithm for middle atmosphere models. J. Atmos. Sci, 51 , 35933614.

  • Zhu, X., Z. Shen, S. D. Eckermann, M. Bittner, I. Hirota, and J-H. Yee, 1997a: Gravity wave characteristics in the middle atmosphere derived from the empirical mode decomposition method. J. Geophys. Res, 102 , (D14). 1654516561.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., P. K. Swaminathan, J. H. Yee, D. F. Strobel, and D. Anderson, 1997b: A globally balanced two-dimensional middle atmosphere model: Dynamical studies of mesopause meridional circulation and stratosphere–mesosphere exchange. J. Geophys. Res, 102 , (D11). 1309513112.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., J-H. Yee, S. A. Lloyd, and D. F. Strobel, 1999: Numerical modeling of chemical–dynamical coupling in the upper stratosphere and mesosphere. J. Geophys. Res, 104 , (D19),. 2399524011.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., J-H. Yee, and D. F. Strobel, 2000a: Coupled models of photochemistry and dynamics in the mesosphere and lower thermosphere. Atmospheric Science across the Stratopause, D. E. Siskind, M. E. Summers, and S. D. Eckermann, Eds., Amer. Geophys. Union, 337–342.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., J-H. Yee, and D. F. Strobel, 2000b: Middle atmosphere age of air in a globally balanced two-dimensional model. J. Geophys. Res, 105 , (D12). 1520115212.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 961 751 37
PDF Downloads 89 37 4