• Andrews, D. G., , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci, 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, 1993: Mountain-wave drag in the stratosphere and mesosphere inferred from observed winds and a simple mountain-wave parameterization scheme. J. Atmos. Sci, 50 , 377399.

    • Search Google Scholar
    • Export Citation
  • Booker, J. R., , and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid. Mech, 27 , 513539.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: The propagation of groups of internal gravity waves in a shear flow. Quart. J. Roy. Meteor. Soc, 92 , 466480.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1969: Momentum transport by gravity waves. Quart. J. Roy. Meteor. Soc, 95 , 213243.

  • Carswell, A. I., , A. Ulitsky, , and D. I. Wardle, 1993: Lidar measurements of the arctic stratosphere. SPIE, 2049 , 923.

  • Coy, L., , E. R. Nash, , and P. A. Newman, 1997: Meteorology of the polar vortex: Spring 1997. Geophys. Res. Lett, 24 , 26932696.

  • Dewan, E. M., , and R. E. Good, 1986: Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J. Geophys. Res, 91 , 27422748.

    • Search Google Scholar
    • Export Citation
  • Duck, T. J., 1999: High arctic observations of strato-mesospheric temperatures and gravity wave activity. Ph.D. thesis, York University, 174 pp.

    • Search Google Scholar
    • Export Citation
  • Duck, T. J., , and J. A. Whiteway, 2000: Seasonal transition in gravity wave activity during the springtime stratospheric vortex breakdown. Geophys. Res. Lett, 27 , 34773480.

    • Search Google Scholar
    • Export Citation
  • Duck, T. J., , J. A. Whiteway, , and A. I. Carswell, 1998: Lidar observations of gravity wave activity and arctic stratospheric vortex core warming. Geophys. Res. Lett, 25 , 28132816.

    • Search Google Scholar
    • Export Citation
  • Duck, T. J., , J. A. Whiteway, , and A. I. Carswell, 2000a: A detailed record of high arctic middle atmospheric temperatures. J. Geophys. Res, 105 , 2290922918.

    • Search Google Scholar
    • Export Citation
  • Duck, T. J., , J. A. Whiteway, , and A. I. Carswell, 2000b: Sudden stratospheric and stratopause warmings. Observations of temperatures in the middle atmosphere above Eureka. Atmospheric Science across the Stratopause, Geophys. Monogr., No. 123, Amer. Geophys. Union, 207–212.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., , and N. Butchart, 1984: Propagation and selective transmission of internal gravity waves in a sudden warming. J. Atmos. Sci, 41 , 14431460.

    • Search Google Scholar
    • Export Citation
  • Fairlie, T. D. A., , and A. O'Neill, 1988: The stratospheric major warming of winter 1984/85: Observations and dynamical inferences. Quart. J. Roy. Meteor. Soc, 114 , 557578.

    • Search Google Scholar
    • Export Citation
  • Fairlie, T. D. A., , M. Fisher, , and A. O'Neill, 1990: The development of narrow baroclinic zones and other small-scale structure in the stratosphere during simulated major warmings. Quart. J. Roy. Meteor. Soc, 116 , 287315.

    • Search Google Scholar
    • Export Citation
  • Fleming, E. L., , S. Chandra, , J. J. Barnett, , and M. Corney, 1990: Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude. Adv. Space Res, 10 , (12)11(12)59.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci, 51 , 22382245.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic, 662 pp.

  • Hamilton, K., 1996: Comprehensive meteorological modelling of the middle atmosphere: A tutorial review. J. Atmos. Terr. Phys, 58 , 15911628.

    • Search Google Scholar
    • Export Citation
  • Hauchecorne, A., , and M. L. Chanin, 1980: Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys. Res. Lett, 7 , 565568.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , C. J. Marks, , M. E. McIntyre, , T. G. Shepherd, , and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci, 48 , 651678.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1988: A modeling of atmospheric gravity waves and wave drag generated by isotropic and anistropic terrain. J. Atmos. Sci, 45 , 309322.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1991: The saturation of gravity waves in the middle atmosphere. Part II: Development of Doppler-spread theory. J. Atmos. Sci, 48 , 13601379.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., , J. C. Gille, , C. D. Rodgers, , and G. Brasseur, 1989:: The separated polar winter stratopause: A gravity wave driven climatological feature. J. Atmos. Sci, 46 , 410422.

    • Search Google Scholar
    • Export Citation
  • Hodges, R. R., 1967: Generation of turbulence in the upper atmosphere by internal gravity waves. J. Geophys. Res, 72 , 34553458.

  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci, 40 , 24972507.

    • Search Google Scholar
    • Export Citation
  • Kanzawa, H., 1989: Warm stratopause in the Antarctic winter. J. Atmos. Sci, 46 , 435438.

  • Labitzke, K., 1981: Stratospheric-mesospheric midwinter disturbances: A summary of observed characteristics. J. Geophys. Res, 86 , 96659678.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res, 86 , 97079714.

  • Lübken, F-J., 1997: Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. J. Geophys. Res, 102 , 1344113456.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci, 28 , 14791494.

  • Matsuno, T., 1982: A quasi one-dimensional model of the middle atmosphere circulation interacting with internal gravity waves. J. Meteor. Soc. Japan, 60 , 215226.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., , and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305 , 593600.

  • McIntyre, M. E., , and T. N. Palmer, 1984: The “surf zone” in the stratosphere. J. Atmos. Terr. Phys, 46 , 825849.

  • McLandress, C., , M. J. Alexander, , and D. L. Wu, 2000: Microwave limb sounder observations of gravity waves in the stratosphere: A climatology and interpretation. J. Geophys. Res, 105 , 1194711967.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1981: Diagnostic study of a wavenumber-2 stratospheric sudden warming in a transformed Eulerian-mean formalism. J. Atmos. Sci, 38 , 844855.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , T. Kumakura, , and M. Takahashi, 1999: Gravity waves appearing in a high-resolution GCM simulation. J. Atmos. Sci, 56 , 10051018.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., 1978: Stratospheric warmings: Observations and theory. Revs. Geophys. Space Phys, 16 , 521538.

  • Shine, K. P., 1987: The middle atmosphere in the absence of dynamical heat fluxes. Quart. J. Roy. Meteor. Soc, 113 , 603633.

  • Sica, R. J., , and M. D. Thorsley, 1996: Measurements of superadiabatic lapse rates in the middle atmosphere. Geophys. Res. Lett, 23 , 27972800.

    • Search Google Scholar
    • Export Citation
  • Whiteway, J. A., , and A. I. Carswell, 1994: Rayleigh lidar observations of thermal structure and gravity wave activity in the High Arctic during a stratospheric warming,. J. Atmos. Sci, 51 , 31223136.

    • Search Google Scholar
    • Export Citation
  • Whiteway, J. A., , and A. I. Carswell, 1995: Lidar observations of gravity wave activity in the upper stratosphere over Toronto. J. Geophys. Res, 100 , 1411314124.

    • Search Google Scholar
    • Export Citation
  • Whiteway, J. A., , and T. J. Duck, 1996: Evidence for critical level filtering of atmospheric gravity waves. Geophys. Res. Lett, 23 , 145148.

    • Search Google Scholar
    • Export Citation
  • Whiteway, J. A., , and T. J. Duck, 1999: Enhanced arctic stratospheric gravity wave activity above a tropospheric jet. Geophys. Res. Lett, 26 , 24532456.

    • Search Google Scholar
    • Export Citation
  • Whiteway, J. A., , T. J. Duck, , D. P. Donovan, , J. C. Bird, , S. R. Pal, , and A. I. Carswell, 1997: Measurements of gravity wave activity within and around the arctic stratospheric vortex. Geophys. Res. Lett, 24 , 13871390.

    • Search Google Scholar
    • Export Citation
  • Yoshiki, M., , and K. Sato, 2000: A statistical study of gravity waves in the polar regions based on operational radiosonde data. J. Geophys. Res, 105 , 1799518011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 115 115 6
PDF Downloads 36 36 3

The Gravity Wave–Arctic Stratospheric Vortex Interaction

View More View Less
  • 1 Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
  • | 2 Department of Physics, University of Wales, Aberystwyth, United Kingdom
  • | 3 Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Four hundred and twenty-two nights of stratospheric gravity wave observations were obtained with a Rayleigh lidar in the High Arctic at Eureka (80°N, 86°W) during six wintertime measurement campaigns between 1992/93 and 1997/98. The measurements are grouped in positions relative to the arctic stratospheric vortex for comparison. Low gravity wave activity is found in the vortex core, outside of the vortex altogether, and in the vortex jet before mid-December. High gravity wave activity is only found in the vortex jet after late December, and is related to strengthening of the jet and decreased critical-level filtering. Calculations suggest that the drag induced by the late-December gravity wave energy increases drives a warming already observed in the vortex core, thereby reducing vortex-jet wind speeds. The gravity waves provide a feedback mechanism that regulates the strength of the arctic stratospheric vortex.

* Current affiliation: Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada.

Corresponding author address: Thomas J. Duck, Dept. of Physics, Dalhousie University, Halifax, NS B3H 3J5, Canada.

Abstract

Four hundred and twenty-two nights of stratospheric gravity wave observations were obtained with a Rayleigh lidar in the High Arctic at Eureka (80°N, 86°W) during six wintertime measurement campaigns between 1992/93 and 1997/98. The measurements are grouped in positions relative to the arctic stratospheric vortex for comparison. Low gravity wave activity is found in the vortex core, outside of the vortex altogether, and in the vortex jet before mid-December. High gravity wave activity is only found in the vortex jet after late December, and is related to strengthening of the jet and decreased critical-level filtering. Calculations suggest that the drag induced by the late-December gravity wave energy increases drives a warming already observed in the vortex core, thereby reducing vortex-jet wind speeds. The gravity waves provide a feedback mechanism that regulates the strength of the arctic stratospheric vortex.

* Current affiliation: Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada.

Corresponding author address: Thomas J. Duck, Dept. of Physics, Dalhousie University, Halifax, NS B3H 3J5, Canada.

Save