• Ayers, G. P., , R. W. Gillett, , and J. L. Gras, 1980: On the vapor pressure of sulfuric acid. Geophys. Res. Lett, 7 , 433436.

  • Baker, R. D., , G. Schubert, , and P. W. Jones, 1998: Cloud-level penetrative compressible convection in the Venus atmosphere. J. Atmos. Sci, 55 , 318.

    • Search Google Scholar
    • Export Citation
  • Barker, E. S., 1975: Observations of Venus water vapor over the disk of Venus: The 1972–74 data using the H2O lines at 8197 Å and 8176 Å. Icarus, 25 , 268281.

    • Search Google Scholar
    • Export Citation
  • Belton, M. S. J., and Coauthors,. 1991: Images from Galileo of the Venus cloud deck. Science, 253 , 15311536.

  • Blamont, J. E., and Coauthors,. 1986: Implication of the VEGA balloon results for Venus atmospheric dynamics. Science, 231 , 14221425.

    • Search Google Scholar
    • Export Citation
  • Carlson, R. W., and Coauthors,. 1991: Galileo infrared imaging spectroscopy measurements at Venus. Science, 253 , 15411548.

  • Carlson, R. W., , L. W. Kamp, , K. H. Baines, , J. B. Pollack, , D. H. Grinspoon, , T. Encrenaz, , P. Drossart, , and F. W. Taylor, 1993: Variations in Venus cloud particle properties: A new view of Venus's cloud morphology as observed by the Galileo near-infrared mapping spectrometer. Planet. Space Sci, 41 , 477485.

    • Search Google Scholar
    • Export Citation
  • Collard, A. D., and Coauthors,. 1993: Latitudinal distributions of carbon monoxide in the deep atmosphere of Venus. Planet. Space Sci, 41 , 487494.

    • Search Google Scholar
    • Export Citation
  • Crisp, D., 1989: Radiative forcing of the Venus mesosphere II. Icarus, 77 , 391413.

  • Donahue, T. M., , and R. R. Hodges Jr., 1992: Past and present water budget of Venus. J. Geophys. Res, 97 , 60836091.

  • Eisenberg, D., , and W. Kauzmann, 1969: The Structure and Properties of Water. University of Oxford Press, 282 pp.

  • Encrenaz, T., , E. Lellouch, , J. Cernicharo, , G. Paubert, , S. Gulkis, , and T. Spilker, 1995: The thermal profile and water abundance in the Venus mesosphere from H2O and HDO millimeter observations. Icarus, 117 , 162172.

    • Search Google Scholar
    • Export Citation
  • Esposito, L. W., , R. G. Knollenberg, , M. Y. Marov, , O. B. Toon, , and R. P. Turco, 1983: The clouds and hazes of Venus. Venus, D. M. Hunten et al., Eds., The University of Arizona Press, 484–564.

    • Search Google Scholar
    • Export Citation
  • Fink, U., , H. P. Larson, , G. P. Kuiper, , and R. F. Poppen, 1972: Water vapor in the atmosphere of Venus. Icarus, 17 , 617631.

  • Gnedykh, V. I., , L. V. Zasova, , V. I. Moroz, , B. E. Moshkin, , and A. P. Ekonomov, 1987: Vertical structure of the Venus cloud layer at the Vega-1 and Vega-2 landing points. Kosmich. Issled, 25 , 707714.

    • Search Google Scholar
    • Export Citation
  • Grinspoon, D. H., , J. B. Pollack, , B. R. Sitton, , R. W. Carlson, , L. W. Kamp, , K. H. Baines, , T. Encrenaz, , and F. W. Taylor, 1993: Probing Venus's cloud structure with Galileo NIMS. Planet. Space Sci, 41 , 515542.

    • Search Google Scholar
    • Export Citation
  • Hamill, P., , C. S. Kiang, , and R. D. Cadle, 1977a: The nucleation of H2SO4–H2O solution aerosol particles in the stratosphere. J. Atmos. Sci, 34 , 150162.

    • Search Google Scholar
    • Export Citation
  • Hamill, P., , O. B. Toon, , and C. S. Kiang, 1977b: Microphysical processes affecting stratospheric aerosol particles. J. Atmos. Sci, 34 , 11041119.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., , and A. Arking, 1971: Clouds of Venus: Evidence for their nature. Science, 171 , 669672.

  • Hansen, J. E., , and J. W. Hovenier, 1974: Interpretation of the polarization of Venus. J. Atmos. Sci, 31 , 11371160.

  • Hashimoto, G. L., , and Y. Abe, 2001: Predictions of a simple cloud model for water vapor cloud albedo feedback on Venus. J. Geophys. Res, 106 , 1467514690.

    • Search Google Scholar
    • Export Citation
  • Hinson, D. P., , and J. M. Jenkins, 1995: Magellan radio occultation measurements of atmospheric waves on Venus. Icarus, 114 , 310327.

  • Ignatiev, N. I., , V. I. Moroz, , B. E. Moshkin, , A. P. Ekonomov, , V. I. Gnedykh, , A. V. Grigoriev, , and I. V. Khatuntsev, 1997: Water vapor in the lower atmosphere of Venus: A new analysis of optical spectra measured by entry proves. Planet. Space Sci, 45 , 427438.

    • Search Google Scholar
    • Export Citation
  • Imamura, T., 1997: Momentum balance of the Venusian midlatitude mesosphere. J. Geophys. Res, 102 , 66156620.

  • Imamura, T., , and G. L. Hashimoto, 1998: Venus cloud formation in the meridional circulation. J. Geophys. Res, 103 , 3134931366.

  • James, E. P., , O. B. Toon, , and G. Schubert, 1997: A numerical microphysical model of the condensational Venus cloud. Icarus, 129 , 147171.

    • Search Google Scholar
    • Export Citation
  • Jenkins, J. M., , P. G. Steffes, , D. P. Hinson, , J. D. Twicken, , and G. L. Tyler, 1994: Radio occultation studies of the Venus atmosphere with the Magellan spacecraft. 2. Results from the October 1991 experiments. Icarus, 110 , 7994.

    • Search Google Scholar
    • Export Citation
  • Kawabata, K., , D. L. Coffeen, , J. E. Hansen, , W. A. Lane, , M. Sato, , and L. D. Travis, 1980: Cloud and haze properties from Pioneer Venus polarimetry. J. Geophys. Res, 85 , 81298140.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., , and D. M. Hunten, 1980: The microphysics of the clouds of Venus: Results of the Pioneer Venus particle size spectrometer experiment. J. Geophys. Res, 85 , 80398058.

    • Search Google Scholar
    • Export Citation
  • Kolodner, M. A., , and P. G. Steffes, 1998: The microwave absorption and abundance of sulfuric acid vapor in the Venus atmosphere based on new laboratory measurements. Icarus, 132 , 151169.

    • Search Google Scholar
    • Export Citation
  • Krasnopolsky, V. A., , and V. A. Parshev, 1983: Photochemistry of the Venus atmosphere. Venus, D. M. Hunten et al., Eds., The University of Arizona Press, 431–458.

    • Search Google Scholar
    • Export Citation
  • Krasnopolsky, V. A., , and J. B. Pollack, 1994: H2O–H2SO4 system in Venus' clouds and OCS, CO, and H2SO4 profiles in Venus' troposphere. Icarus, 109 , 5878.

    • Search Google Scholar
    • Export Citation
  • Kulmala, M., , and A. Laaksonen, 1990: Binary nucleation of water-sulfuric acid system: Comparison of classical theories with different H2SO4 saturation vapor pressures. J. Chem. Phys, 93 , 696701.

    • Search Google Scholar
    • Export Citation
  • Mills, F. P., 1999: A spectroscopic search for molecular oxygen in the Venus middle atmosphere. J. Geophys. Res, 104 , 3075730763.

  • Pollack, J. B., , D. W. Strecker, , F. C. Witteborn, , E. F. Erickson, , and B. J. Baldwin, 1978: Properties of the clouds of Venus, as inferred from airborne observations of its near-infrared reflectivity spectrum. Icarus, 34 , 2845.

    • Search Google Scholar
    • Export Citation
  • Pollack, J. B., and Coauthors,. 1993: Near-infrared light from Venus's nightside: A spectroscopic analysis. Icarus, 103 , 142.

  • Prinn, R. G., 1978: Venus: Chemistry of the lower atmosphere prior to the Pioneer Venus mission. Geophys. Res. Lett, 5 , 973976.

  • Rossow, W. B., , A. D. Del Genio, , and T. Eichler, 1990: Cloud-tracked winds from Pioneer Venus OCPP images. J. Atmos. Sci, 47 , 20532084.

    • Search Google Scholar
    • Export Citation
  • Schubert, G., and Coauthors,. 1980: Structure and circulation of the Venus atmosphere. J. Geophys. Res, 85 , 80078025.

  • Seiff, A., and Coauthors,. 1985: Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv. Space Res, 5 , 358.

    • Search Google Scholar
    • Export Citation
  • Seiff, A., , R. E. Young, , R. Haberle, , and H. Houben, 1992: The evidence of waves in the atmospheres of Venus and Mars. Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, Geophys. Monogr., No. 66, Amer. Geophys. Union, 73–89.

    • Search Google Scholar
    • Export Citation
  • Taylor, F. W., , D. M. Hunten, , and L. V. Ksanfomaliti, 1983: The thermal balance of the middle and upper atmosphere of Venus. Venus, D. M. Hunten et al., Eds., The University of Arizona Press, 650–680.

    • Search Google Scholar
    • Export Citation
  • Taylor, F. W., , D. Crisp, , and B. Bézard, 1997: Near-infrared soundings of the lower atmosphere of Venus. Venus II, S. W. Bougher, D. M. Hunten, and R. J. Phillips, Eds., The University of Arizona Press, 325–351.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., , R. P. Turco, , and J. B. Pollack, 1982: The ultraviolet absorber on Venus: Amorphous sulfur. Icarus, 51 , 358373.

  • Toon, O. B., , R. P. Turco, , D. Westphal, , R. Malone, , and M. S. Liu, 1988: A multidimensional model for aerosols: Description of computational analogs. J. Atmos. Sci, 45 , 21232143.

    • Search Google Scholar
    • Export Citation
  • von Zahn, U., , S. Kumar, , H. Niemann, , and R. Prinn, 1983: Composition of the Venus atmosphere. Venus, D. M. Hunten et al., Eds., The University of Arizona Press, 484–564.

    • Search Google Scholar
    • Export Citation
  • Woo, R., , and A. Ishimaru, 1981: Eddy diffusion coefficient for the atmosphere of Venus from radio scintillation measurement. Nature, 289 , 383384.

    • Search Google Scholar
    • Export Citation
  • Woo, R., , J. W. Armstrong, , and A. J. Kliore, 1982: Small-scale turbulence in the atmosphere of Venus. Icarus, 52 , 335345.

  • Yamamoto, M., , and H. Tanaka, 1998: The Venusian Y-shaped cloud pattern based on an aerosol-transport model. J. Atmos. Sci, 55 , 14001416.

    • Search Google Scholar
    • Export Citation
  • Young, A. T., 1973: Are the clouds on Venus sulfuric acid? Icarus, 18 , 564582.

  • Yung, Y. L., , and W. B. DeMore, 1982: Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution. Icarus, 51 , 199247.

    • Search Google Scholar
    • Export Citation
  • Zeleznik, F. J., 1991: Thermodynamic properties of the aqueous sulfuric acid system to 350 K. J. Phys. Chem. Ref. Data, 20 , 11571200.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 143 14
PDF Downloads 91 91 2

Microphysics of Venusian Clouds in Rising Tropical Air

View More View Less
  • 1 Institute of Space and Astronautical Science, Kanagawa, Japan
  • | 2 Center for Climate System Research, University of Tokyo, Tokyo, Japan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

As the global distribution of Venusian H2SO4–H2O clouds is strongly related to the global circulation of H2SO4 governed by wind transport and sedimentation of droplets, the circulation of H2SO4 in the Tropics was studied by simultaneously solving advection and cloud microphysics equations using a one-dimensional model that includes a weak upwelling representing the rising branch of Hadley circulation near the equator. H2SO4 vapor in the upper cloud region is supplied by photochemical production and condenses into cloud droplets that are removed from the tropical atmosphere by Hadley circulation, whereas in middle and lower cloud regions, dynamical processes supply H2SO4 vapor from below such that resultant droplets are large and fall against the upwelling. The combination of the mean upward advection of vapor and the sedimentation of droplets leads to accumulation of H2SO4 and H2O vapor near the cloud base: an observed phenomenon. A separate model run was performed to investigate the effect of transient strong winds on condensational growth, with results indicating that transient winds produce a variety of size distributions similar to those observed. Variation in cloud thickness associated with such events is thought to explain large opacity variations in near-infrared observations.

Corresponding author address: Takeshi Imamura, Institute of Space and Astronautical Science, 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan. Email: ima@bochan.ted.isas.ac.jp

Abstract

As the global distribution of Venusian H2SO4–H2O clouds is strongly related to the global circulation of H2SO4 governed by wind transport and sedimentation of droplets, the circulation of H2SO4 in the Tropics was studied by simultaneously solving advection and cloud microphysics equations using a one-dimensional model that includes a weak upwelling representing the rising branch of Hadley circulation near the equator. H2SO4 vapor in the upper cloud region is supplied by photochemical production and condenses into cloud droplets that are removed from the tropical atmosphere by Hadley circulation, whereas in middle and lower cloud regions, dynamical processes supply H2SO4 vapor from below such that resultant droplets are large and fall against the upwelling. The combination of the mean upward advection of vapor and the sedimentation of droplets leads to accumulation of H2SO4 and H2O vapor near the cloud base: an observed phenomenon. A separate model run was performed to investigate the effect of transient strong winds on condensational growth, with results indicating that transient winds produce a variety of size distributions similar to those observed. Variation in cloud thickness associated with such events is thought to explain large opacity variations in near-infrared observations.

Corresponding author address: Takeshi Imamura, Institute of Space and Astronautical Science, 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan. Email: ima@bochan.ted.isas.ac.jp

Save