• Alexander, M. J., , and L. Pfister, 1995: Gravity wave momentum flux in the lower stratosphere over convection. Geophys. Res. Lett., 22 , 20292032.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , and J. R. Holton, 1997: A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves. J. Atmos. Sci., 54 , 408419.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and Y. Mintz, 1974: The UCLA Atmospheric General Circulation Model. Workshop Notes of the UCLA Atmospheric General Circulation Model, Los Angeles, CA, UCLA Dept. of Atmospheric Sciences, 411 pp.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Bousquet, O., , and M. Chong, 2000: The oceanic mesoscale convective system and associated mesovortex observed 12 December 1992 during TOGA-COARE. Quart. J. Roy. Meteor. Soc., 126 , 189211.

    • Search Google Scholar
    • Export Citation
  • Carr, M. T., , and C. S. Bretherton, 2001: Convective momentum transport over the tropical Pacific: Budget estimates. J. Atmos. Sci., 58 , 16731693.

    • Search Google Scholar
    • Export Citation
  • Chen, S., , and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123 , 357388.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Davis, A. B., , A. L. Marshak, , W. J. Wiscombe, , and R. F. Cahalan, 1994: Multifractal characterizations of nonstationarity and intermittency in geophysical fields, observed, retrieved or simulated. J. Geophys. Res., 99 , 80558072.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Fovell, R., , D. Durran, , and J. R. Holton, 1992: Numerical simulation of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49 , 14271442.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A. Jr,, , and R. H. Johnson, 1992: The momentum budget of an intense midlatitude squall line. J. Atmos. Sci., 49 , 422450.

  • Gibson, J. K., , P. Kallberg, , S. Uppala, , A. Hernandez, , A. Nomura, , and E. Serrano, 1997: ERA description. ERA ECMWF Re-Analysis Project Report Series 1,. European Centre for Medium-Range Weather Forecasts, 72 pp. [Available from ECMWF, Shinfield Park, Reading, Berkshire RG2 9AX, United Kngdom.].

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , R. Kershaw, , and P. M. Inness, 1997: Parameterization of momentum transport by convection. II: Tests in single column and general circulation models. Quart. J. Roy. Meteor. Soc., 123 , 11531183.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., , G. N. Kiladis, , G. A. Meehl, , K. M. Weickmann, , and M. Wheeler, 1994: Seasonal climate summary: The global climate of December 1992–February 1993. Part II: Large-scale variability across the tropical western Pacific during TOGA COARE. J. Climate, 7 , 16061622.

    • Search Google Scholar
    • Export Citation
  • Hocking, W. K., , and P. K. L. Mu, 1997: Upper and middle tropospheric kinetic energy dissipation rates from measurements of C2 n Review of theories, in-situ investigations, and experimental studies using the Buckland Park atmospheric radar in Australia. J. Atmos. Solar-Terr. Phys., 59 , 17791803.

    • Search Google Scholar
    • Export Citation
  • Holland, J. Z., , and E. M. Rasmusson, 1973: Measurements of the atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean. Mon. Wea. Rev., 101 , 4454.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A. Jr,, , and A. K. Betts, 1981: Convection in GATE. Rev. Geophys. Space Phys., 19 , 541576.

  • Inness, P. M., , and D. Gregory, 1997: Aspects of the intraseasonal oscillation simulated by the Hadley Centre atmospheric model. Climate Dyn., 13 , 441458.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and X. Lin, 1997: Episodic trade wind regimes over the western Pacific warm pool. J. Atmos. Sci., 54 , 20202034.

  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Kershaw, R., , and D. Gregory, 1997: Parameterization of momentum transport by convection. I: Theory and cloud modelling results. Quart. J. Roy. Meteor. Soc., 123 , 11331151.

    • Search Google Scholar
    • Export Citation
  • Kung, E. C., 1967: Diurnal and long-term variations of the kinetic energy generation and dissipation for a five-year period. Mon. Wea. Rev., 95 , 593606.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1980: The marine boundary layer. Workshop on the Planetary Boundary Layer, J. C. Wyngaard, Ed., Amer. Meteor. Soc., 182–231.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., . 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40 , 18151834.

  • LeMone, M. A., , and M. W. Moncrieff, 1994: Momentum and mass transport by convective bands: Comparisons of highly idealized dynamical models to observations. J. Atmos. Sci., 51 , 281305.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., , G. M. Barnes, , and E. J. Zipser, 1984: Momentum flux by lines of cumulonimbus over the tropical oceans. J. Atmos. Sci., 41 , 19141932.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., 1970: Airplane measurements of planetary boundary layer structure. J. Appl. Meteor., 9 , 874884.

  • Lewis, S. A., , M. A. LeMone, , and D. P. Jorgensen, 1998: Evolution and dynamics of a late-stage squall line that occurred on 20 February 1993 during TOGA COARE. Mon. Wea. Rev., 126 , 31893212.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , and R. H. Johnson, 1996a: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 33673383.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , and R. H. Johnson, . 1996b: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 695715.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere. Oxford, 487 pp.

  • Loehrer, S. M., , T. A. Edmands, , and J. A. Moore, 1996: TOGA COARE upper-air sounding data archive: Development and quality control procedures. Bull. Amer. Meteor. Soc., 77 , 26512671.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Mandelbrot, B. B., 1982: The Fractal Geometry of Nature. W. H. Freeman, 460 pp.

  • Mapes, B. E., , and X. Wu, 2001: Convective eddy momentum tendencies in long cloud-resolving model simulations. J. Atmos. Sci., 58 , 517526.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1981: A theory of organized steady convection and its transport properties. Quart. J. Roy. Meteor. Soc., 107 , 2950.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., . 1992: Organized convective systems: Archetypical dynamical models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Meteor. Soc., 118 , 819850.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., , and A. M. Yaglom, 1975: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 2. MIT Press, 874 pp.

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., . 1995: Intraseasonal oscillations during the TOGA-COARE IOP. J. Meteor. Soc. Japan, 73 , 305319.

  • Nitta, T., 1977: Response of cumulus updraft and downdraft to GATE A/B-scale motion systems. J. Atmos. Sci., 34 , 11631186.

  • Ooyama, K., 1971: A theory on parameterization of cumulus convection. J. Meteor. Soc. Japan, 49 ((Special Issue),) 744756.

  • Peixoto, J. P., , and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pennell, W. T., , and M. A. LeMone, 1974: An experimental study of turbulence structure in the fair-weather trade wind boundary layer. J. Atmos. Sci., 31 , 13081323.

    • Search Google Scholar
    • Export Citation
  • Piani, C., , D. Durran, , M. J. Alexander, , and J. R. Holton, 2000: A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. J. Atmos. Sci., 57 , 36893702.

    • Search Google Scholar
    • Export Citation
  • Roux, F., 1998: The oceanic mesoscale convective system observed with airborne Doppler radars on 9 February 1993 during TOGA-COARE: Structure, evolution and budgets. Quart. J. Roy. Meteor. Soc., 124 , 585614.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., , and R. S. Lindzen, 1976: A discussion of the parameterization of momentum exchange by cumulus convection. J. Geophys. Res., 81 , 31583160.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., , and D. E. Stevens, 1980: Parameterization of convective effects on the momentum and vorticity budgets of synoptic-scale Atlantic tropical waves. Mon. Wea. Rev., 108 , 18161826.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , J. Duan, , J. C. McWilliams, , M. Münnich, , and D. Neelin, 2002: Entrainment, Rayleigh friction, and boundary layer winds over the tropical Pacific. J. Climate, 15 , 3044.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., , and M. Yanai, 1986: Cumulus ensemble effects on the large-scale vorticity and momentum fields of GATE. Part I: Observational evidence. J. Atmos. Sci., 43 , 16281642.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., , and K-M. Lau, 1992: Multiscale phenomena in the tropical atmosphere over the western Pacific. Mon. Wea. Rev., 120 , 407430.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part II: Westward-propagating inertio-gravity waves. J. Meteor. Soc. Japan, 72 , 451465.

    • Search Google Scholar
    • Export Citation
  • Tollerud, E. I., , and S. K. Esbensen, 1983: An observational study of the upper-tropospheric vorticity fields in GATE cloud clusters. Mon. Wea. Rev., 111 , 21612175.

    • Search Google Scholar
    • Export Citation
  • Tung, W-W., , and M. Yanai, 2000: Convective heating and momentum transport associated with tropical disturbances. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Fort Lauderdale, FL, Amer. Meteor. Soc., 518–519.

    • Search Google Scholar
    • Export Citation
  • Tung, W-W., , C. Lin, , B. Chen, , M. Yanai, , and A. Arakawa, 1999: Basic modes of cumulus heating and drying observed during TOGA-COARE IOP. Geophys. Res. Lett., 26 , 31173120.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., , and J. A. Young, 1994: Satellite observations during TOGA COARE: Large-scale descriptive overview. Mon. Wea. Rev., 122 , 24262441.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1971: Spectral studies of tropospheric wave disturbances in the tropical western Pacific. Rev. Geophys. Space Phys., 9 , 557612.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and R. Lukas, 1992: TOGA COARE—The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73 , 13771416.

    • Search Google Scholar
    • Export Citation
  • Wu, X., 1994: Diagnostic and semi-prognostic studies of cumulus effects in the presence of mesoscale circulations. Mon. Wea. Rev., 122 , 652670.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51 , 16401660.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and R. H. Johnson, 1993: Impacts of cumulus convection on thermodynamic fields. The Representation of Cumulus Convection in Numerical Models of the Atmosphere, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 39–62.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , T. Maruyama, , T. Nitta, , and Y. Hayashi, 1968: Power spectra of large-scale disturbances over the tropical Pacific. J. Meteor. Soc. Japan, 46 , 308323.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. K. Esbensen, , and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , B. Chen, , and W-W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57 , 23742396.

    • Search Google Scholar
    • Export Citation
  • Zangvil, A., , and M. Yanai, 1980: Upper tropospheric waves in the Tropics. Part I: Dynamical analysis in the wavenumber-frequency domain. J. Atmos. Sci., 37 , 283298.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and H-R. Cho, 1991a: Parameterization of the vertical transport of momentum by cumulus clouds. Part I: Theory. J. Atmos. Sci., 48 , 14831492.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and H-R. Cho, . 1991b: Parameterization of the vertical transport of momentum by cumulus clouds. Part II: Application. J. Atmos. Sci., 48 , 24482457.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Role of convective-scale momentum transport in climate simulation. J. Geophys. Res., 100 , 14171426.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 118 118 82
PDF Downloads 24 24 0

Convective Momentum Transport Observed during the TOGA COARE IOP. Part I: General Features

View More View Less
  • 1 Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The momentum budget residual X = (X, Y) is estimated with objectively analyzed soundings taken during the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) intense observing period (IOP; November 1992–February 1993) to study the effects of convective momentum transport (CMT) over the western Pacific warm pool. The time series of X and Y exhibit multiscale temporal behavior, showing modulations by the Madden–Julian oscillation (MJO) and other disturbances. The power spectra of X, Y, and ITBB (an index of convective activity) are remarkably similar, showing peaks near 10, 4–5, and 2 days, and at the diurnal period, suggesting a link between deep cumulus convection and the acceleration–deceleration of the large-scale horizontal motion, via CMT, which is being modulated by various atmospheric disturbances. The temporal behavior of X and Y can be described as fractals from 1/4 to ∼20 and from 1/4 to ∼16 days, respectively. Their fractal characteristics are reflected in the very large standard deviations around the small IOP means. From the analyses of the quantities uX/|u|, υY/|υ|, and v · X, the IOP-mean vertical distributions of the frictional force due to subgrid-scale eddies and the rate of kinetic energy transfer (E = −v · X) are determined. The frictional deceleration and downscale energy transfer take place in a deep tropospheric layer from the surface to 300 hPa. In addition, a concentration of large friction and energy transfer exists in a layer just below the tropopause, suggesting the contribution of momentum detrainment from the top of deep cumuli. The IOP-mean frictional deceleration and downscale energy transfer in the lower troposphere are ∼0.5–1.0 m s−1 day−1 and ∼1.0 × 10−4 m2 s−3, respectively. The product of eddy momentum flux with the large-scale vertical wind shear shows that the momentum transport is, on the average, downgradient; that is, kinetic energy is converted from the large-scale motion to convection and turbulence.

Corresponding author address: Dr. Michio Yanai, Department of Atmospheric Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1565. Email: yanai@atmos.ucla.edu

Abstract

The momentum budget residual X = (X, Y) is estimated with objectively analyzed soundings taken during the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) intense observing period (IOP; November 1992–February 1993) to study the effects of convective momentum transport (CMT) over the western Pacific warm pool. The time series of X and Y exhibit multiscale temporal behavior, showing modulations by the Madden–Julian oscillation (MJO) and other disturbances. The power spectra of X, Y, and ITBB (an index of convective activity) are remarkably similar, showing peaks near 10, 4–5, and 2 days, and at the diurnal period, suggesting a link between deep cumulus convection and the acceleration–deceleration of the large-scale horizontal motion, via CMT, which is being modulated by various atmospheric disturbances. The temporal behavior of X and Y can be described as fractals from 1/4 to ∼20 and from 1/4 to ∼16 days, respectively. Their fractal characteristics are reflected in the very large standard deviations around the small IOP means. From the analyses of the quantities uX/|u|, υY/|υ|, and v · X, the IOP-mean vertical distributions of the frictional force due to subgrid-scale eddies and the rate of kinetic energy transfer (E = −v · X) are determined. The frictional deceleration and downscale energy transfer take place in a deep tropospheric layer from the surface to 300 hPa. In addition, a concentration of large friction and energy transfer exists in a layer just below the tropopause, suggesting the contribution of momentum detrainment from the top of deep cumuli. The IOP-mean frictional deceleration and downscale energy transfer in the lower troposphere are ∼0.5–1.0 m s−1 day−1 and ∼1.0 × 10−4 m2 s−3, respectively. The product of eddy momentum flux with the large-scale vertical wind shear shows that the momentum transport is, on the average, downgradient; that is, kinetic energy is converted from the large-scale motion to convection and turbulence.

Corresponding author address: Dr. Michio Yanai, Department of Atmospheric Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1565. Email: yanai@atmos.ucla.edu

Save