• Abraham, F., 1970: Functional dependence of drag coefficient of a sphere on Reynolds number. Phys. Fluids, 13 , 21942195.

  • Bashkirova, T. A., , and T. A. Pershina, 1964: On the mass of snow crystals and their fall velocity. Proc. Main Geophys. Obs., 165 , 83100.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33 , 851864.

  • Bohm, J. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46 , 24192427.

  • Bohm, J. P., . 1992: A general hydrodynamic theory for mixed-phase microphysics. Part I: Drag and fall speeds of hydrometeors. Atmos. Res., 27 , 253274.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., , and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Fowler, L. D., , D. A. Randall, , and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate, 9 , 489529.

    • Search Google Scholar
    • Export Citation
  • Gu, Yu, , and K. N. Liou, 2000: Interactions of radiation, microphysics, and turbulence in the evolution of cirrus clouds. J. Atmos. Sci., 57 , 24632479.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., , and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6 , 243248.

  • Heymsfield, A. J., 1972: Ice crystal terminal velocities. J. Atmos. Sci., 29 , 13481357.

  • Heymsfield, A. J., , and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41 , 846855.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44 , 10881099.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 57 , 916938.

  • Jayaweera, L. O. L. F., , and R. E. Cottis, 1969: Fall velocities of plate-like and column ice crystals. Quart. J. Roy. Meteor. Soc., 95 , 703709.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., , and K. Sassen, 1998: Cirrus cloud simulation using explicit microphysics and radiation. Part I: Model description. J. Atmos. Sci., 55 , 18081821.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., , and J. A. Curry, 1999a: Toward the theory of stochastic condensation in clouds. Part I: A general kinetic equation. J. Atmos. Sci., 56 , 39853996.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., , and J. A. Curry, . 1999b: Toward the theory of stochastic condensation in clouds. Part II: Analytical solutions of gamma distribution type. J. Atmos. Sci., 56 , 39974013.

    • Search Google Scholar
    • Export Citation
  • Lin, R-F., , D. O'C. Starr, , P. J. DeMott, , R. Cotton, , E. Jensen, , and K. Sassen, 2000: Cirrus parcel model intercomparison project phase 1. Proc. Int. Cloud Physics Conf., Reno, NV, IPCC, 1221–1224.

    • Search Google Scholar
    • Export Citation
  • Litvinov, I. V., 1956: Determination of falling velocity of snow particles. Izv. Acad. Sci. USSR, Geophys. Ser., 7 , 853856.

  • Locatelli, J. D., , and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Magono, C., , and C. V. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ., 2 , 321362.

  • Matrosov, S. Y., , and A. J. Heymsfield, 2000: Use of Doppler radar to assess ice cloud particle fall velocity-size relations for remote sensing and climate studies. J. Geophys. Res., 105 , 2242722436.

    • Search Google Scholar
    • Export Citation
  • Miller, S. O., , and G. L. Stephens, 2001: CloudSat instrument requirements as determined from ECMWF forecasts of global cloudiness. J. Geophys. Res, 106 , 713733.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part I: Microphysics. J. Atmos. Sci., 51 , 797816.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., . 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53 , 17101723.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , and W. P. Arnott, 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci., 51 , 817832.

    • Search Google Scholar
    • Export Citation
  • Petch, J. C., , G. C. Craig, , and K. P. Shine, 1997: A comparison of two bulk microphysical schemes and their effects on radiative transfer using a single-column model. Quart. J. Roy. Meteor. Soc., 123 , 15611580.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer, 997 pp.

  • Rogers, R. R., 1976: A Short Course in Cloud Physics. A. Wheaton & Co., 266 pp.

  • Starr, D. O'C., , and S. K. Cox, 1985a: Cirrus clouds. Part I: A cirrus cloud model. J. Atmos. Sci., 42 , 26632681.

  • Starr, D. O'C., , and S. K. Cox, . 1985b: Cirrus clouds. Part II: Numerical experiments on the formation and maintenance of cirrus. J. Atmos. Sci., 42 , 26822694.

    • Search Google Scholar
    • Export Citation
  • Starr, D. O'C., and Coauthors. 2000: Comparison of cirrus cloud models: A project of the GEWEX Cloud System Study (GCSS) working group on cirrus cloud systems. Proc. Int. Cloud Physics Conf., Reno, NV, IPCC, 1–4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 437 437 102
PDF Downloads 260 260 19

Terminal Velocities of Droplets and Crystals: Power Laws with Continuous Parameters over the Size Spectrum

View More View Less
  • 1 Central Aerological Observatory, Dolgoprudny, Moscow, Russia
  • | 2 Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This paper presents a unified treatment of cloud particle fall velocities for both liquid and crystalline cloud particles over the entire size range observed in the atmosphere. The fall velocity representation is formulated in terms of the Best (or Davies) number X, and the Reynolds number Re. For the power-law representations used in many applications, the coefficients are found as the continuous analytical functions of X (or diameter) over the entire hydrometeor size range. Analytical asymptotic solutions are obtained for these coefficients for the two regimes that represent large and small particles and correspond to potential and aerodynamical flows, respectively. The new formulation is compared with experimental data and previous formulations for small drops, large nonspherical drops, and various ice crystal habits. For ice crystals, published mass–dimension and area–dimension relationships are used. The advantage of the new representation of fall velocities over previous representations is that the continuous representation avoids inaccuracy at the points of discontinuity for different size regimes, allows easier parameterization of the hydrometeor size spectra, and allows for continuous integration over the size spectrum. The new fall velocity formulation may be applied to bin-resolving and bulk microphysical models, as well as to remote sensing.

Corresponding author address: Dr. J. A. Curry, Department of Aerospace Engineering Sciences, UCB 429, University of Colorado, Boulder, CO 80309-0429. Email: curryja@cloud.colorado.edu

Abstract

This paper presents a unified treatment of cloud particle fall velocities for both liquid and crystalline cloud particles over the entire size range observed in the atmosphere. The fall velocity representation is formulated in terms of the Best (or Davies) number X, and the Reynolds number Re. For the power-law representations used in many applications, the coefficients are found as the continuous analytical functions of X (or diameter) over the entire hydrometeor size range. Analytical asymptotic solutions are obtained for these coefficients for the two regimes that represent large and small particles and correspond to potential and aerodynamical flows, respectively. The new formulation is compared with experimental data and previous formulations for small drops, large nonspherical drops, and various ice crystal habits. For ice crystals, published mass–dimension and area–dimension relationships are used. The advantage of the new representation of fall velocities over previous representations is that the continuous representation avoids inaccuracy at the points of discontinuity for different size regimes, allows easier parameterization of the hydrometeor size spectra, and allows for continuous integration over the size spectrum. The new fall velocity formulation may be applied to bin-resolving and bulk microphysical models, as well as to remote sensing.

Corresponding author address: Dr. J. A. Curry, Department of Aerospace Engineering Sciences, UCB 429, University of Colorado, Boulder, CO 80309-0429. Email: curryja@cloud.colorado.edu

Save