Analysis of the Influence of Film-Forming Compounds on Droplet Growth: Implications for Cloud Microphysical Processes and Climate

Graham Feingold NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by Graham Feingold in
Current site
Google Scholar
PubMed
Close
and
Patrick Y. Chuang NCAR Advanced Study Program, Boulder, Colorado

Search for other papers by Patrick Y. Chuang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Decades of cloud microphysical research have not provided conclusive understanding of the physical processes responsible for droplet spectral broadening. Numerous mechanisms have been proposed—for example, entrainment mixing, vortex shedding, giant cloud condensation nuclei (CCN), chemical processing of CCN, and radiative cooling—all of which are likely candidates under select conditions. In this paper it is suggested that variability in the composition of CCN, and in particular, the existence of condensation inhibiting compounds, is another possible candidate. The inferred potential abundance of these amphiphilic film-forming compounds (FFCs) suggests that their effect may be important. Using a cloud parcel model with a simplified treatment of the effect of FFCs, it is shown that modest concentrations of FFCs (on the order of 5% of the total aerosol mass) can have a marked effect on drop growth and can cause significant increases in spectral dispersions. Moreover, it is shown that FFCs may, in some cases, reduce the number concentration of cloud droplets, with implications for cloud-climate feedbacks. This trend is at least in qualitative agreement with results from a recent field campaign.

Current affiliation: Department of Earth Sciences, University of California, Santa Cruz, Santa Cruz, California

Corresponding author address: Graham Feingold, NOAA/ETL, 325 Broadway, Boulder, CO 80305. Email: graham.feingold@noaa.gov

Abstract

Decades of cloud microphysical research have not provided conclusive understanding of the physical processes responsible for droplet spectral broadening. Numerous mechanisms have been proposed—for example, entrainment mixing, vortex shedding, giant cloud condensation nuclei (CCN), chemical processing of CCN, and radiative cooling—all of which are likely candidates under select conditions. In this paper it is suggested that variability in the composition of CCN, and in particular, the existence of condensation inhibiting compounds, is another possible candidate. The inferred potential abundance of these amphiphilic film-forming compounds (FFCs) suggests that their effect may be important. Using a cloud parcel model with a simplified treatment of the effect of FFCs, it is shown that modest concentrations of FFCs (on the order of 5% of the total aerosol mass) can have a marked effect on drop growth and can cause significant increases in spectral dispersions. Moreover, it is shown that FFCs may, in some cases, reduce the number concentration of cloud droplets, with implications for cloud-climate feedbacks. This trend is at least in qualitative agreement with results from a recent field campaign.

Current affiliation: Department of Earth Sciences, University of California, Santa Cruz, Santa Cruz, California

Corresponding author address: Graham Feingold, NOAA/ETL, 325 Broadway, Boulder, CO 80305. Email: graham.feingold@noaa.gov

Save
  • Baker, M. B., R. G. Corbin, and J. Latham, 1980: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing. Quart. J. Roy. Meteor. Soc., 106 , 581598.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. T., 1986: The effects of monolayers on the evaporation of liquids. Adv. Colloid Interface Sci., 25 , 89200.

  • Baumgardner, D., W. Strapp, and J. E. Dye, 1985: Evaluation of the Forward Scattering Spectrometer Probe. Part II: Corrections for coincidence and dead-time losses. J. Atmos. Oceanic Technol., 2 , 626632.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1986: Discrepancy between observations and prediction of concentrations of cloud condensation nuclei. Atmos. Res., 20 , 8286.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., J. L. Brownscombe, and W. J. Thompson, 1969: Fog modification with long-chain alcohols. J. Appl. Meteor., 8 , 7582.

  • Blanchard, D. C., 1964: Sea-to-air transport of surface active material. Science, 146 , 396397.

  • Brown, P. N., G. D. Byrne, and A. C. Hindmarsh, 1989: VODE: A variable coefficient ODE solver. SIAM J. Sci. Stat. Comput., 10 , 10381051.

    • Search Google Scholar
    • Export Citation
  • Chodes, N., J. Warner, and A. Gagin, 1974: A determination of the condensation coefficient of water from the growth rate of small cloud droplets. J. Atmos. Sci., 31 , 13511357.

    • Search Google Scholar
    • Export Citation
  • Chuang, P. Y., D. R. Collins, H. Pawlowska, J. R. Snider, H. H. Jonsson, J. L. Brenguier, R. C. Flagan, and H. H. Seinfeld, 2000: CCN measurements during ACE-2 and their relationship to cloud microphysical properties. Tellus, 52B , 843867.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., 1986: Interactions among turbulence, radiation and microphysics in Arctic stratus clouds. J. Atmos. Sci., 43 , 90106.

  • Derjaguin, B. V., Y. S. Kurghin, S. P. Bakanov, and K. M. Merzhanov, 1985: Influence of surfactant vapor on the spectrum of cloud drops forming in the process of condensation growth. Langmuir, 1 , 278281.

    • Search Google Scholar
    • Export Citation
  • Facchini, M. C., M. Mircea, S. Fuzzi, and R. J. Charlson, 1999: Cloud albedo enhancement by surface active organic solutes in growing droplets. Nature, 401 , 257259.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and A. J. Heymsfield, 1992: Parameterizations of condensational growth of droplets for use in general circulation models. J. Atmos. Sci., 49 , 23252342.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: Impact of giant cloud condensation nuclei on drizzle formation in marine stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56 , 41004117.

    • Search Google Scholar
    • Export Citation
  • Garrett, W. D., 1971: Retardation of water drop evaporation with monomolecular surface films. J. Atmos. Sci., 28 , 816819.

  • Gerber, H., 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci., 53 , 16491662.

  • Gill, P. S., T. E. Graedel, and C. J. Weschler, 1983: Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes. Rev. Geophys. Space Phys., 21 , 903920.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., G. Feingold, and W. R. Cotton, 2000: Radiative impacts on the growth of a population of drops within simulated summertime Arctic stratus. J. Atmos. Sci., 57 , 766785.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and S. S. Yum, 1997: Droplet spectral broadening in marine stratus. J. Atmos. Sci., 54 , 26422654.

  • Husar, R. B., and W. R. Shu, 1975: Thermal analyses of the Los Angeles smog aerosol. J. Appl. Meteor., 14 , 15581565.

  • Jaenicke, R., 1993: Tropospheric aerosols. Aerosol–Cloud–Climate Interactions, P. V. Hobbs, Ed., Academic Press, 1–31.

  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39 , 448460.

  • Kocmond, W. C., W. D. Garrett, and E. J. Mack, 1972: Modification of laboratory fog with organic surface films. J. Geophys. Res., 77 , 32213231.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S., and W. A. Cooper, 2000: Comparison of theory and observations of broadening of cloud droplet size distributions in warm cumuli. Preprints, 13th Int.Conf. on Clouds and Precipitation. Reno, NV, ICCP, 90–93.

    • Search Google Scholar
    • Export Citation
  • Leaitch, W. R., and Coauthors. 1996: Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: Factors controlling cloud droplet number concentrations. J. Geophys. Res., 101 , 2912329135.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius in warm stratocumulus clouds. J. Atmos. Sci., 51 , 18231842.

    • Search Google Scholar
    • Export Citation
  • McNamee, C. E., G. T. Barnes, I. R. Gentle, J. B. Peng, R. Steitz, and R. Probert, 1998: The evaporation resistance of mixed monolayers of octadecanol and cholesterol. J. Colloid Interface Sci., 207 , 258263.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110 , 783820.

    • Search Google Scholar
    • Export Citation
  • Noonkester, V. R., 1984: Droplet spectra observed in marine stratus cloud layers. J. Atmos. Sci., 41 , 829844.

  • Otani, Y., and C. S. Wang, 1984: Growth and deposition of saline droplets covered with a monolayer of surfactant. Aerosol Sci. Technol., 3 , 155166.

    • Search Google Scholar
    • Export Citation
  • Podzimek, J., and A. N. Saad, 1975: Retardation of condensation nuclei growth by surfactant. J. Geophys. Res., 80 , 33863392.

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Raga, G. B., and P. R. Jonas, 1993: On the link between cloud-top radiative properties and sub-cloud aerosol concentrations. Quart. J. Roy. Meteor. Soc., 119 , 14191425.

    • Search Google Scholar
    • Export Citation
  • Roach, W. T., 1976: On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet. Quart. J. Roy. Meteor. Soc., 102 , 361372.

    • Search Google Scholar
    • Export Citation
  • Rubel, G. O., and J. W. Gentry, 1984: Measurement of the kinetics of solution droplets in the presence of adsorbed monolayers: Determination of water accommodation coefficients. J. Phys. Chem., 88 , 31423148.

    • Search Google Scholar
    • Export Citation
  • Seaver, M., J. R. Peele, T. J. Manuccia, G. O. Rubel, and G. Ritchie, 1992: Evaporation kinetics of ventilated waterdrops coated with octadecanol monolayers. J. Phys. Chem., 96 , 63896394.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., and D. Lamb, 1999: Experimental determination of the thermal accommodation and condensation coefficients of water. J. Chem. Phys., 111 , 1065910663.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., W. C. Reade, L. R. Collins, and J. Verlinde, 1998: Preferential concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra. J. Atmos. Sci., 55 , 19651976.

    • Search Google Scholar
    • Export Citation
  • Snead, C. C., and J. T. Zung, 1968: The effects of insoluble films upon the evaporation kinetics of liquid droplets. J. Colloid Interface Sci., 27 , 2531.

    • Search Google Scholar
    • Export Citation
  • Snider, J. R., and J-L. Brenguier, 2000: Cloud condensation nuclei and cloud droplet measurements during ACE-2. Tellus, 52B , 828842.

  • Warner, J., 1969: The microstructure of cumulus clouds. Part I. General features of the droplet spectrum. J. Atmos. Sci., 26 , 10491059.

    • Search Google Scholar
    • Export Citation
  • Xiong, J. Q., M. Zhong, C. Fang, L. C. Chen, and M. Lippmann, 1998: Influence of organic films on the hygroscopicity of ultrafine sulfuric acid aerosol. Environ. Sci. Technol., 32 , 35363541.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. M. Kreidenweis, and G. Feingold, 1999: Stratocumulus processing of gases and cloud condensation nuclei: Part II: chemistry sensitivity analysis. J. Geophys. Res., 104 , 1660116080.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 491 125 10
PDF Downloads 261 89 2