Mesoscale Variability of Tropical Precipitation: Validation of Satellite Estimates of Wave Forcing Using TOGA COARE Radar Data

Takeshi Horinouchi Radio Science Center for Space and Atmosphere, Kyoto University, Uji, Japan

Search for other papers by Takeshi Horinouchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite-derived brightness temperature has been used to estimate tropical precipitation. Ricciardulli and Garcia applied it to quantify forcing of atmospheric waves that are excited by tropical cumulus convection and propagate into the middle atmosphere. Because of the broad coverage of the satellite data, this method provides exclusively dense information on wave forcing and is especially valuable for middle-atmosphere modeling. However, the validity of the method has not been investigated, which is done in this study using radar-derived precipitation during the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) field experiment. The method is shown to overestimate the variance of precipitation so that the wave forcing derived with it is too strong. The overestimation is most severe at coarse resolution, reaching nearly an order of magnitude at a grid scale of 2°, which is comparable to typical resolutions of current global climate models. Although the comparison was made using data from a limited region in the western Pacific, it is suggested that the method overestimates wave forcing globally. The probability distribution of the mean radar precipitation on the meso-β scale fits well to the gamma distribution, while that for the satellite-derived precipitation does not. The latter shows a high probability of extreme grid mean precipitation, and this contributes to the overestimation. The frequency spectra of radar and satellite precipitation showed some similarity in shape, but differences are evident at subdiurnal frequencies. In addition to the satellite method, the Geostationary Operational Environmental Satellite (GOES) Precipitation Index (GPI) is also investigated. GPI shows a similar, but better, performance to estimate wave forcing.

Corresponding author address: Takeshi Horinouchi, Radio Science Center for Space and Atmosphere, Kyoto University, Gokasho, Uji 611-0011, Japan. Email: horinout@kurasc.kyoto-u.ac.jp

Abstract

Satellite-derived brightness temperature has been used to estimate tropical precipitation. Ricciardulli and Garcia applied it to quantify forcing of atmospheric waves that are excited by tropical cumulus convection and propagate into the middle atmosphere. Because of the broad coverage of the satellite data, this method provides exclusively dense information on wave forcing and is especially valuable for middle-atmosphere modeling. However, the validity of the method has not been investigated, which is done in this study using radar-derived precipitation during the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) field experiment. The method is shown to overestimate the variance of precipitation so that the wave forcing derived with it is too strong. The overestimation is most severe at coarse resolution, reaching nearly an order of magnitude at a grid scale of 2°, which is comparable to typical resolutions of current global climate models. Although the comparison was made using data from a limited region in the western Pacific, it is suggested that the method overestimates wave forcing globally. The probability distribution of the mean radar precipitation on the meso-β scale fits well to the gamma distribution, while that for the satellite-derived precipitation does not. The latter shows a high probability of extreme grid mean precipitation, and this contributes to the overestimation. The frequency spectra of radar and satellite precipitation showed some similarity in shape, but differences are evident at subdiurnal frequencies. In addition to the satellite method, the Geostationary Operational Environmental Satellite (GOES) Precipitation Index (GPI) is also investigated. GPI shows a similar, but better, performance to estimate wave forcing.

Corresponding author address: Takeshi Horinouchi, Radio Science Center for Space and Atmosphere, Kyoto University, Gokasho, Uji 611-0011, Japan. Email: horinout@kurasc.kyoto-u.ac.jp

Save
  • Adler, R. F., A. J. Negri, P. R. Keehn, and I. M. Hakkarinen, 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor., 32 , 335356.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115 , 5174.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and P. Xie, 1994: The Global Precipitation Climatology Project: First algorithm intercomparison project. Bull. Amer. Meteor. Soc., 75 , 401419.

    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and A. Gruber, 2001: GOES multispectral rainfall algorithm (GMSRA). J. Appl. Meteor., 40 , 15001514.

  • Bergman, J. W., and M. L. Salby, 1994: Equatorial wave activity derived from fluctuations in observed convection. J. Atmos. Sci., 51 , 37913806.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102 , 2605326076.

  • Ebert, E. E., and M. J. Manton, 1998: Performance of satellite rainfall estimation algorithms during TOGA COARE. J. Atmos. Sci., 55 , 15371557.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., F. H. Weng, N. C. Grody, and L. M. Zhao, 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophy. Res. Lett., 27 , 26692672.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., D. G. Golder, and P. W. Jones, 1997: Tropical gravity waves and superclusters simulated by high-horizontal-resolution SKYHI general circulation models. J. Meteor. Soc. Japan, 75 , 11251139.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29 , 10761080.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and S. Yoden, 1996: Wave excitation by localized heating in the Tropics and its propagation into the middle atmosphere. J. Meteor. Soc. Japan, 74 , 189210.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., . 1998: Wave-mean flow interaction associated with a QBO-like oscillation simulated in a simplified GCM. J. Atmos. Sci., 55 , 502526.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A. Jr,, 1982: Cloud cluster and large-scale vertical motions in the Tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Huffman, G. J., and Coauthors. 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Itoh, H., 1977: The response of equatorial waves to thermal forcing. J. Meteor. Soc. Japan, 55 , 222239.

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 33673383.

    • Search Google Scholar
    • Export Citation
  • Miller, S. W., P. A. Arkin, and R. Joyce, 2001: A combined microwave/infrared rain rate algorithm. Int. J. Remote Sens., 22 , 32853307.

    • Search Google Scholar
    • Export Citation
  • Morrissey, M. L., and J. S. Greene, 1993: Comparison of two satellite-based rainfall algorithms using Pacific atoll raingage data. J. Appl. Meteor., 32 , 411425.

    • Search Google Scholar
    • Export Citation
  • Ohsawa, T., H. Ueda, T. Hayashi, A. Watanabe, and J. Matsumoto, 2001: Diurnal variations of connective activity and rainfall in tropical Asia. J. Meteor. Soc. Japan, 79 , 333352.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., and Coauthors. 2000: The GCM-reality intercomparison project for SPARC (GRIPS): Scientific issues and initial results. Bull. Amer. Meteor. Soc., 81 , 781796.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and R. R. Garcia, 2000: The excitation of equatorial waves by deep convection in the NCAR Community Climate Model (CCM3). J. Atmos. Sci., 57 , 34613487.

    • Search Google Scholar
    • Export Citation
  • Richards, F., and P. Arkin, 1981: On the relationship between satellite-observed cloud cover and precipitation. Mon. Wea. Rev., 109 , 10811093.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., and S. A. Rutledge, 1998: Convection in TOGA COARE: Horizontal scale, morphology, and rainfall production. J. Atmos. Sci., 55 , 27152729.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and R. R. Garcia, 1987: Transient response to localized episodic heating in the Tropics. Part I: Excitation and short-time near field behavior. J. Atmos. Sci., 44 , 458498.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., and R. R. Garcia, 1997: The role of equatorial waves forced by convection in the tropical semiannual oscillation. J. Atmos. Sci., 54 , 19251942.

    • Search Google Scholar
    • Export Citation
  • Saxen, T. R., and S. A. Rutledge, 2000: Surface rainfall–cold cloud fractional coverage relationship in TOGA COARE: A function of vertical wind shear. Mon. Wea. Rev., 128 , 407415.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., P. A. Kucera, B. S. Ferrier, J. C. Gerlach, S. A. Rutledge, and O. W. Thiele, 1997: Shipboard radar rainfall patterns within the TOGA COARE IFA. Bull. Amer. Meteor. Soc., 78 , 28172836.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., K-M. Lau, and C-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124 , 18921913.

  • Xie, P., and P. A. Arkin, 1995: An intercomparison of gauge observations and satellite estimates of monthly precipitation. J. Appl. Meteor., 34 , 11431160.

    • Search Google Scholar
    • Export Citation
  • Xie, P., . 1997: Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center General Circulation Model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 16 3
PDF Downloads 29 10 1