Nonhydrostatic, Three-Dimensional Perturbations to Balanced, Hurricane-like Vortices. Part I: Linearized Formulation, Stability, and Evolution

David S. Nolan Colorado State University, Fort Collins, Colorado

Search for other papers by David S. Nolan in
Current site
Google Scholar
PubMed
Close
and
Michael T. Montgomery Colorado State University, Fort Collins, Colorado

Search for other papers by Michael T. Montgomery in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, the first of two parts, the dynamics of linearized perturbations to hurricane-like vortices are studied. Unlike previous studies, which are essentially two-dimensional or assume that the perturbations are quasi-balanced, the perturbations are fully three-dimensional and nonhydrostatic. The vortices used as basic states are also three-dimensional (though axisymmetric), with wind fields modeled closely after observations of hurricanes and tropical storms, and are initially in hydrostatic and gradient wind balance.

The equations of motion, computational methods for solving them, and methods for generating the basic-state hurricane-like vortices are presented. In particular, three basic states are studied: a vortex modeled after an intense (category 3) hurricane, a moderate (category 1) hurricane, and a weak tropical storm. The stability of each vortex is considered. The category 3 vortex is found to be rather unstable, with its fastest growing mode occurring for azimuthal wavenumber three with an e-folding time of approximately 1 h. The category 1 vortex is less unstable, as its most unstable mode occurs for wavenumber two with an e-folding time of 5 h. In both cases, these unstable modes are found to be close analogs of their strictly two-dimensional counterparts, and essentially barotropic in nature.

The tropical storm–like vortex is found to be stable for all azimuthal wavenumbers. For this vortex, the evolution of purely thermal, unbalanced perturbations in the vortex environment are studied; such disturbances might be the result of asymmetric bursts of convection in the vicinity of the vortex, which are typical for developing storms. The evolution of these perturbations goes through two phases. First, there is substantial gravity wave radiation and rapid adjustment to quasi-gradient wind balance. In the second phase, the quasi-balanced perturbations are axisymmetrized by the shear of the basic-state vortex, and cause localized accelerations of the symmetric vortex via eddy momentum and heat fluxes. The full response of the symmetric vortex and comparisons to fully nonlinear simulations are the topics of the second part.

Corresponding author address: Prof. David S. Nolan, RSMAS/MPO, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: dnolan@rsmas.miami.edu

Abstract

In this paper, the first of two parts, the dynamics of linearized perturbations to hurricane-like vortices are studied. Unlike previous studies, which are essentially two-dimensional or assume that the perturbations are quasi-balanced, the perturbations are fully three-dimensional and nonhydrostatic. The vortices used as basic states are also three-dimensional (though axisymmetric), with wind fields modeled closely after observations of hurricanes and tropical storms, and are initially in hydrostatic and gradient wind balance.

The equations of motion, computational methods for solving them, and methods for generating the basic-state hurricane-like vortices are presented. In particular, three basic states are studied: a vortex modeled after an intense (category 3) hurricane, a moderate (category 1) hurricane, and a weak tropical storm. The stability of each vortex is considered. The category 3 vortex is found to be rather unstable, with its fastest growing mode occurring for azimuthal wavenumber three with an e-folding time of approximately 1 h. The category 1 vortex is less unstable, as its most unstable mode occurs for wavenumber two with an e-folding time of 5 h. In both cases, these unstable modes are found to be close analogs of their strictly two-dimensional counterparts, and essentially barotropic in nature.

The tropical storm–like vortex is found to be stable for all azimuthal wavenumbers. For this vortex, the evolution of purely thermal, unbalanced perturbations in the vortex environment are studied; such disturbances might be the result of asymmetric bursts of convection in the vicinity of the vortex, which are typical for developing storms. The evolution of these perturbations goes through two phases. First, there is substantial gravity wave radiation and rapid adjustment to quasi-gradient wind balance. In the second phase, the quasi-balanced perturbations are axisymmetrized by the shear of the basic-state vortex, and cause localized accelerations of the symmetric vortex via eddy momentum and heat fluxes. The full response of the symmetric vortex and comparisons to fully nonlinear simulations are the topics of the second part.

Corresponding author address: Prof. David S. Nolan, RSMAS/MPO, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: dnolan@rsmas.miami.edu

Save
  • Andrews, D. G., and M. E. McIntyre, 1978: Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35 , 175185.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1982: Tropical Cyclones: Their Structure, Evolution, and Effects. Meteor. Monogr., No. 41, Amer. Meteor. Soc., 298 pp.

  • Black, P. G., and F. D. Marks, 1991: The structure of an eyewall meso-vortex in Hurricane Hugo (1989). Preprints, 19th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 579–582.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128 , 39413961.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. Simpson, and W-K. Tao, 2000: Kinematic and thermodynamic structures of Hurricane Bob (1991) determined from a 1.3-km-resolution numerical simulation. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Fort Lauderdale, FL, Amer. Meteor. Soc., 376–377.

    • Search Google Scholar
    • Export Citation
  • Camp, J. P., and M. T. Montgomery, 2001: Hurricane maximum intensity: Past and present. Mon. Wea. Rev., 129 , 17041717.

  • Carr, L. E., and R. T. Williams, 1989: Barotropic vortex stability to perturbations from axisymmetry. J. Atmos. Sci., 46 , 31773191.

  • Challa, M., and R. L. Pfeffer, 1980: Effects of eddy fluxes of angular momentum on the model hurricane development. J. Atmos. Sci., 37 , 16031618.

    • Search Google Scholar
    • Export Citation
  • Challa, M., R. L. Pfeffer, Q. Zhao, and S. W. Chang, 1998: Can eddy fluxes serve as a catalyst for typhoon and hurricane formation? J. Atmos. Sci., 55 , 22012219.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and K. K. W. Cheung, 1998: Characteristics of the asymmetric circulation associated with tropical cyclone motion. Meteor. Atmos. Phys., 65 , 183196.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58 , 21282144.

    • Search Google Scholar
    • Export Citation
  • Daida, S. K., and G. M. Barnes, 2000: The eyewall of category 1 Hurricane Paine near landfall. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Fort Lauderdale, FL, Amer. Meteor. Soc., 414–415.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated statistical hurricane intensity prediction scheme for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14 , 326337.

    • Search Google Scholar
    • Export Citation
  • Dodge, P. R., W. Burpee, and F. D. Marks, 1999: The kinematic structure of a hurricane with sea level pressure less than 900 mb. Mon. Wea. Rev., 127 , 9871004.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5 , 1960.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. E., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46 , 34313456.

  • Emanuel, K. E., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. E., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54 , 10141026.

  • Enagonio, J., and M. T. Montgomery, 2001: Tropical cyclogenesis via convectively forced vortex Rossby waves in a shallow water primitive equation model. J. Atmos. Sci., 58 , 685706.

    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46 , 975990.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1988: On the instability of geostrophic vortices. J. Fluid Mech., 197 , 349388.

  • Fujita, T. T., 1971: Proposed mechanism of suction spot accompanied by tornadoes. Preprints, Seventh Conf. on Severe Local Storms, Kansas City, MO, Amer. Meteor. Soc., 208–213.

    • Search Google Scholar
    • Export Citation
  • Fulton, J. D., 2001: Insight into the hurricane vortex using a high resolution numerical simulation of Hurricane Bob (1991). M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 84 pp.

    • Search Google Scholar
    • Export Citation
  • Gall, R. L., 1983: A linear analysis of the multiple vortex phenomenon in simulated tornadoes. J. Atmos. Sci., 40 , 20102024.

  • Gall, R. L., 1985: Linear dynamics of the multiple vortex phenomenon in tornadoes. J. Atmos. Sci., 42 , 761772.

  • Gent, P. R., and J. C. McWilliams, 1986: The instability of barotropic circular vortices. Geophys. Astrophys. Fluid Dyn., 35 , 209233.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1997: The tropical cyclone's maximum potential intensity (MPI). Preprints, 22d Conf. on Hurricanes and Tropical Meteorology, Fort Collins, CO, Amer. Meteor. Soc., 288–289.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50 , 33803403.

  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43 , 15591573.

    • Search Google Scholar
    • Export Citation
  • Hasler, A. F., P. G. Black, V. M. Karyampudi, M. Jentoft-Nilsen, K. Palaniappan, and D. Chesters, 1997: Synthesis of eyewall mesovortex and supercell convective structures in Hurricane Luis with GOES-8/9 stereo, concurrent 1-min GOES-9 and NOAA airborne radar observations. Preprints, 22d Conf. on Hurricanes and Tropical Meteorology, Fort Collins, CO, Amer. Meteor. Soc., 201–202.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the representation of Rossby wave critical layers and wave breaking in zonally truncated models. J. Atmos. Sci., 44 , 23592382.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54 , 25192541.

  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 507 pp.

  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15 , 9197.

  • Knaff, J., J. Kossin, and M. DeMaria, 2002: What are annular hurricanes? Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 609–610.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 10791090.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58 , 21962209.

    • Search Google Scholar
    • Export Citation
  • Kuo, H-C., R. T. Williams, and J-H. Chen, 1999: A possible mechanism for the eye rotation of Typhoon Herb. J. Atmos. Sci., 56 , 16591673.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., R. E. Tuleya, and M. A. Bender, 1998: The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Mon. Wea. Rev., 126 , 13061322.

    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., D. C. Lewellen, and R. Sykes, 1997: Large-eddy simulation of a tornado's interaction with the surface. J. Atmos. Sci., 54 , 581605.

    • Search Google Scholar
    • Export Citation
  • Lewis, B. M., and H. F. Hawkins, 1982: Polygonal eyewalls and rainbands in hurricanes. Bull. Amer. Meteor. Soc., 63 , 12941300.

  • Liu, Y., D-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: An explicit simulation. Mon. Wea. Rev., 125 , 30733093.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., D-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127 , 25972616.

    • Search Google Scholar
    • Export Citation
  • MacDonald, N. J., 1968: The evidence for the existence of Rossby-like waves in the hurricane vortex. Tellus, 20 , 138150.

  • Marks, F. D., 1992: Kinematic structure of the hurricane inner core as revealed by airborne Doppler radar. Preprints, Fifth Conf. on Mesoscale Processes, Atlanta, GA, Amer. Meteor. Soc., 127–132.

    • Search Google Scholar
    • Export Citation
  • McAdie, C., and M. B. Lawrence, 2000: Improvements in tropical cyclone track forecasting in the Atlantic basin, 1970–1998. Bull. Amer. Meteor. Soc., 81 , 989998.

    • Search Google Scholar
    • Export Citation
  • Michalke, A., and A. Timme, 1967: On the inviscid instability of certain two-dimensional vortex-type flows. J. Fluid Mech., 29 , 647666.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56 , 16741687.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57 , 33663387.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and L. J. Shapiro, 1995: Generalized Charney–Stern and Fjortoft theorems for rapidly rotating vortices. J. Atmos. Sci., 52 , 18291833.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123 , 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and C. Lu, 1997: Free waves on barotropic vortices. Part I: Eigenmode structure. J. Atmos. Sci., 54 , 18681885.

  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogensis via convectively forced vortex Rossby waves in a three-dimensional quasi-geostrophic model. J. Atmos. Sci., 55 , 31763207.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. D. Möller, and C. T. Nicklas, 1999: Linear and nonlinear vortex motion in an asymmetric balance shallow water model. J. Atmos. Sci., 56 , 749768.

    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1986: The structure of a polygonal eye of a typhoon. J. Meteor. Soc. Japan, 64 , 913921.

  • Nolan, D. S., and B. F. Farrell, 1999a: Generalized stability analyses of asymmetric disturbances in one- and two-celled vortices maintained by radial inflow. J. Atmos. Sci., 56 , 12821307.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and B. F. Farrell, 1999b: The intensification of two-dimensional swirling flows by stochastic asymmetric forcing. J. Atmos. Sci., 56 , 39373962.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2000: The algebraic growth of wavenumber one disturbances in hurricane-like vortices. J. Atmos. Sci., 57 , 35143538.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., M. T. Montgomery, and L. D. Grasso, 2001: The wavenumber one instability and trochoidal motion of hurricane-like vortices. J. Atmos. Sci., 58 , 32433270.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1966: On the stability of the baroclinic circular vortex: A sufficient criterion for instability. J. Atmos. Sci., 23 , 4353.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60 , 369379.

  • Orr, W. M., 1907: Stability or instability of steady motions of a perfect liquid. Proc. Roy. Ir. Acad., 27 , 969.

  • Palmen, E., and C. W. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. Academic Press, 603 pp.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., and R. T. Williams, 1991: Stability analyses of barotropic vortices. Geophys. Astrophys. Fluid Dyn., 58 , 263283.

  • Pfeffer, R. L., 1958: Concerning the mechanics of hurricanes. J. Meteor., 15 , 113120.

  • Pfeffer, R. L., and M. Challa, 1981: A numerical study of the role of eddy fluxes of momentum in the development of Atlantic hurricanes. J. Atmos. Sci., 38 , 23932398.

    • Search Google Scholar
    • Export Citation
  • Rayleigh, Lord, 1880: On the stability, or instability, of certain fluid motions. Proc. London Math. Soc., 11 , 5770.

  • Rayleigh, Lord, 1916: On the dynamics of revolving fluids. Proc. Roy. Soc. London, A11 , 148154.

  • Reasor, P. D., M. T. Montgomery, F. D. Marks, and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. J. Atmos. Sci., 128 , 16531680.

    • Search Google Scholar
    • Export Citation
  • Reznik, G. M., and W. K. Dewar, 1994: An analytical theory of distributed axisymmetric barotropic vortices on the beta-plane. J. Fluid Mech., 269 , 301321.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1978: A note on the stability of a cylindrical vortex sheet. J. Fluid Mech., 87 , 761771.

  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., J. J. Hack, P. L. Silva Dias, and S. R. Fulton, 1980: Geostrophic adjustment in an axisymmetric vortex. J. Atmos. Sci., 37 , 14641484.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. G. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 2000: Potential vorticity asymmetries and tropical cyclone evolution in a moist three-layer model. J. Atmos. Sci., 57 , 36453662.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39 , 378394.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50 , 33223335.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and J. E. Franklin, 1995: Potential vorticity in Hurricane Gloria. Mon. Wea. Rev., 123 , 14651475.

  • Smith, G. B., and M. T. Montgomery, 1995: Vortex axisymmetrization: Dependence of azimuthal wavenumber or asymmetric radial structure changes. Quart. J. Roy. Meteor. Soc., 121 , 16151650.

    • Search Google Scholar
    • Export Citation
  • Smith, R. A., and M. N. Rosenbluth, 1990: Algebraic instability of hollow electron columns and cylindrical vortices. Phys. Rev. Lett., 64 , 649652.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and H. C. Weber, 1993: An extended analytic theory of tropical-cyclone motion in a barotropic shear flow. Quart. J. Roy. Meteor. Soc., 119 , 11491166.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. C. McWilliams, 1998: Instability of an axisymmetric vortex in a stably stratified, rotating environment. Theor. Comput. Fluid Dyn., 11 , 305322.

    • Search Google Scholar
    • Export Citation
  • Staley, D. O., and R. L. Gall, 1979: Barotropic instability in a tornado vortex. J. Atmos. Sci., 36 , 973981.

  • Thompson, W., 1887: Stability of fluid motion: Rectilinear motion of viscous fluid between two parallel plates. Philos. Mag., 24 , 188196.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., 1986: Nongeostrophic theory of zonally averaged circulation. Part I: Formulation. J. Atmos. Sci., 43 , 26002618.

  • Walko, R., and R. Gall, 1984: A two-dimensional linear stability analysis of the multiple vortex phenomenon. J. Atmos Sci., 41 , 34563471.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59 , 12131238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity change. J. Atmos. Sci., 59 , 12391262.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47 , 265274.

  • Willoughby, H. E., 1992: Linear motion of a shallow-water barotropic vortex as an initial value problem. J. Atmos. Sci., 49 , 20152031.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1994: Nonlinear motion of a shallow water barotropic vortex. J. Atmos. Sci., 51 , 37223744.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 486 190 3
PDF Downloads 294 97 3