Momentum Budget of the East Antarctic Atmospheric Boundary Layer: Results of a Regional Climate Model

M. R. van den Broeke Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands

Search for other papers by M. R. van den Broeke in
Current site
Google Scholar
PubMed
Close
,
N. P. M. van Lipzig Royal Netherlands Meteorological Institute, de Bilt, Netherlands

Search for other papers by N. P. M. van Lipzig in
Current site
Google Scholar
PubMed
Close
, and
E. van Meijgaard Royal Netherlands Meteorological Institute, de Bilt, Netherlands

Search for other papers by E. van Meijgaard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Output of a regional atmospheric climate model is used to quantify the average January and July momentum budget of the atmospheric boundary layer (ABL) over the East Antarctic ice sheet and the surrounding oceans. Results are binned in nine elevation intervals over the ice sheet and six distance intervals over the ocean. In January, when surface cooling is weak, the large-scale pressure gradient force dominates the ABL momentum budget. In July, under conditions of strong surface cooling, a shallow katabatic jet develops over the gentle slopes of the interior ice sheet and a strong, deep jet over the steep coastal slopes. In the coastal regions the ABL thickens considerably, caused by the piling up of cold air over the adjacent sea ice and ice shelves. This represents the main opposing force for the katabatic winds. Horizontal and vertical advection are generally small. In the cross-slope direction the momentum budget represents a simple balance between surface drag and Coriolis turning. Intraseasonal variability of the large-scale wind field in the ABL can be explained in terms of the strength of the polar vortex, the background baroclinicity, and the topography of the ice sheet. Subsidence is found over the interior ice sheet and rising motion in the coastal zone, reflecting the acceleration and deceleration of the katabatic circulation. However, vertical velocities are generally small, because the downslope mass flux in the ABL is confined to a shallow layer below the wind speed maximum.

Corresponding author address: Dr. Michiel R. van den Broeke, Institute for Marine and Atmospheric Research (IMAU), Utrecht University, P.O. Box 80 005, 3508 TA Utrecht, Netherlands. Email: broeke@phys.uu.nl

Abstract

Output of a regional atmospheric climate model is used to quantify the average January and July momentum budget of the atmospheric boundary layer (ABL) over the East Antarctic ice sheet and the surrounding oceans. Results are binned in nine elevation intervals over the ice sheet and six distance intervals over the ocean. In January, when surface cooling is weak, the large-scale pressure gradient force dominates the ABL momentum budget. In July, under conditions of strong surface cooling, a shallow katabatic jet develops over the gentle slopes of the interior ice sheet and a strong, deep jet over the steep coastal slopes. In the coastal regions the ABL thickens considerably, caused by the piling up of cold air over the adjacent sea ice and ice shelves. This represents the main opposing force for the katabatic winds. Horizontal and vertical advection are generally small. In the cross-slope direction the momentum budget represents a simple balance between surface drag and Coriolis turning. Intraseasonal variability of the large-scale wind field in the ABL can be explained in terms of the strength of the polar vortex, the background baroclinicity, and the topography of the ice sheet. Subsidence is found over the interior ice sheet and rising motion in the coastal zone, reflecting the acceleration and deceleration of the katabatic circulation. However, vertical velocities are generally small, because the downslope mass flux in the ABL is confined to a shallow layer below the wind speed maximum.

Corresponding author address: Dr. Michiel R. van den Broeke, Institute for Marine and Atmospheric Research (IMAU), Utrecht University, P.O. Box 80 005, 3508 TA Utrecht, Netherlands. Email: broeke@phys.uu.nl

Save
  • Allison, I., G. Wendler, and U. Radok, 1993: Climatology of the East Antarctic ice sheet (100°E to 140°E) derived from automatic weather stations. J. Geophys. Res., 98 (D5) 8815–8823.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and Y. Du, 1994: Numerical simulation of winter katabatic winds from West Antarctica crossing Siple Coast and the Ross Ice Shelf. Mon. Wea. Rev., 122 , 1417–1435.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and Z. Liu, 1996: An observational study of the katabatic wind confluence zone near Siple Coast, West Antarctica. Mon. Wea. Rev., 124 , 462–477.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., and K. R. Rao, 1965: The formation of drainage wind on a snow dome. J. Glaciol., 7 , 833–841.

  • Connolley, W. M., 1996: The Antarctic temperature inversion. Int. J. Climatol., 16 , 1333–1342.

  • Denby, B., 1999: Second-order modelling of turbulence in katabatic flows. Bound.-Layer Meteor., 92 , 67–100.

  • Gallée, H., and G. Schayes, 1992: Dynamical aspects of katabatic winds evolution in the Antarctic coastal zone. Bound.-Layer Meteor., 59 , 141–161.

    • Search Google Scholar
    • Export Citation
  • Gallée, H., P. Pettré, and G. Schayes, 1996: Sudden cessation of katabatic winds in Adélie Land, Antarctica. J. Appl. Meteor., 35 , 1129–1141.

    • Search Google Scholar
    • Export Citation
  • Genthon, C., and A. Braun, 1995: ECMWF analysis and predictions of the surface climate of Greenland and Antarctica. J. Climate, 8 , 2324–2332.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, and T. R. Parish, 1995: A mesoscale modeling study of the atmospheric circulation of high southern latitudes. Mon. Wea. Rev., 123 , 1146–1165.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, T., and Y. Ageta, 1989: A preliminary estimate of inertia effects in a bulk model of katabatic wind. Proc. NIPR Symp. Polar Meteor. Glaciol., 2 , 61–69.

    • Search Google Scholar
    • Export Citation
  • King, J. C., 1993: Control of near-surface winds over an Antarctic ice shelf. J. Geophys. Res., 98 (D7) 12949–12953.

  • King, J. C., 1996: Longwave atmospheric radiation over Antarctica. Antarct. Sci., 8 , 105–109.

  • Kodama, Y., G. Wendler, and N. Ishikawa, 1989: The diurnal variation of the boundary layer in summer in Adélie Land, Eastern Antarctica. J. Appl. Meteor., 28 , 16–24.

    • Search Google Scholar
    • Export Citation
  • Kottmeier, C., 1986: Shallow gravity flows over the Ekström Ice Shelf. Bound.-Layer Meteor., 35 , 1–20.

  • Kottmeier, C., 1988: Atmosphärische Strömungsvorgänge am Rande der Antarktis. Berichte des Institutes für Meteorologie und Klimatologie der Universität Hannover, Vol. 33, Ph.D. thesis, University of Hanover, 153 pp.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1982: Momentum balance of gravity flow. J. Atmos. Sci., 39 , 2701–2711.

  • Parish, T. R., and D. H. Bromwich, 1987: The surface windfield over the Antarctic ice sheets. Nature, 328 , 51–54.

  • Parish, T. R., and K. T. Waight, 1987: The forcing of Antarctic katabatic winds. Mon. Wea. Rev., 115 , 2214–2226.

  • Parish, T. R., and J. J. Cassano, 2001: Forcing of the wintertime Antarctic boundary layer winds from the NCEP–NCAR global reanalysis. J. Appl. Meteor., 40 , 810–821.

    • Search Google Scholar
    • Export Citation
  • Pettré, P., and J. C. André, 1991: Surface pressure change through Loewe's phenomena and katabatic flow jumps: Study of two cases in Adélie Land, Antarctica. J. Atmos. Sci., 48 , 557–571.

    • Search Google Scholar
    • Export Citation
  • Schwerdtfeger, W., 1970: The climate of the Antarctic. World Survey of Climatology, H. E. Landsberg, Ed., Vol. 14, Elsevier, 253–355.

    • Search Google Scholar
    • Export Citation
  • Streten, N. A., 1990: A review of the climate of Mawson—A representative strong wind site in East Antarctica. Antarct. Sci., 2 , 79–89.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., 1997: Spatial and temporal variation of sublimation on Antarctica: Results of a high-resolution general circulation model. J. Geophys. Res., 102 (D25) 29765–29778.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., 2000a: On the interpretation of Antarctic temperature time series. J. Climate, 13 , 3885–3889.

  • van den Broeke, M. R., 2000b: The semi-annual oscillation and Antarctic climate. Part 5: Impact on the annual temperature cycle as derived from NCEP re-analysis. Climate Dyn., 16 , 369–377.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., and R. Bintanja, 1995: Summer time atmospheric circulation in the vicinity of a blue ice area in east Queen Maud Land, Antarctica. Bound.-Layer Meteor., 72 , 411–438.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., R. S. W. van de Wal, and M. Wild, 1997: Representation of Antarctic katabatic winds in a high-resolution GCM and a note on their climate sensitivity. J. Climate, 10 , 3111–3130.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., J-G. Winther, E. Isaksson, J. F. Pinglot, L. Karlöf, T. Eiken, and L. Conrads, 1999: Climate variables along a traverse line in Dronning Maud Land, East Antarctica. J. Glaciol., 45 , 295–302.

    • Search Google Scholar
    • Export Citation
  • van Lipzig, N. P. M., 1999: The surface mass balance of the Antarctic ice sheet: A study with a regional atmospheric model. Ph.D. thesis, Utrecht University, 154 pp. [Available from IMAU, P.O. Box 80005, 3508 TA Utrecht, Netherlands.].

    • Search Google Scholar
    • Export Citation
  • van Lipzig, N. P. M., E. van Meijgaard, and J. Oerlemans, 1998: Evaluation of a regional atmospheric climate model for January 1993, using in situ measurements from the Antarctic. Ann. Glaciol., 27 , 507–514.

    • Search Google Scholar
    • Export Citation
  • van Lipzig, N. P. M., E. van Meijgaard, and J. Oerlemans, 1999: Evaluation of a regional atmospheric model using measurements of surface heat exchange processes from a site in Antarctica. Mon. Wea. Rev., 127 , 1994–2011.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., 1967: The half-yearly oscillation in the middle and high southern latitudes and the coreless winter. J. Atmos. Sci., 24 , 472–486.

    • Search Google Scholar
    • Export Citation
  • Weller, G., 1969: A meridional wind speed profile in MacRobertson Land, Antarctica. Pure Appl. Geophys., 77 , 193–200.

  • Wendler, G., J. C. André, P. Pettré, J. Gosink, and T. Parish, 1993: Katabatic winds in Adélie coast. Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations, D. H. Bromwich and C. R. Stearns, Eds., Antarctic Research Series, Vol. 61, Amer. Geophys. Union, 23–46.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 441 67 6
PDF Downloads 226 61 5