THE TERMINAL VELOCITY OF FALL FOR WATER DROPLETS IN STAGNANT AIR

Ross Gunn U. S. Weather Bureau, Washington, D. C.

Search for other papers by Ross Gunn in
Current site
Google Scholar
PubMed
Close
and
Gilbert D. Kinzer U. S. Weather Bureau, Washington, D. C.

Search for other papers by Gilbert D. Kinzer in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The terminal velocities for distilled water droplets falling through stagnant air are accurately determined. More than 1500 droplets of mass from 0.2 to 100,000 micrograms, embracing droplets so small that Stokes' law is obeyed up to and including droplets so large that they are mechanically unstable, were measured by a new method employing electronic techniques. An apparatus for the production of electrically charged artificial water droplets at a controllable rate is described. The over-all accuracy of the mass-terminal-velocity measurements is better than 0.7 per cent.

Abstract

The terminal velocities for distilled water droplets falling through stagnant air are accurately determined. More than 1500 droplets of mass from 0.2 to 100,000 micrograms, embracing droplets so small that Stokes' law is obeyed up to and including droplets so large that they are mechanically unstable, were measured by a new method employing electronic techniques. An apparatus for the production of electrically charged artificial water droplets at a controllable rate is described. The over-all accuracy of the mass-terminal-velocity measurements is better than 0.7 per cent.

Save