• Ackerman, T. P., 1991: A tutorial on global atmospheric energetics and the greenhouse effect. Global Warming: Physics and Facts, B. G. Levi, D. Hafemeister, and R. Scribner, Eds., American Institute of Physics, 1–23.

    • Search Google Scholar
    • Export Citation
  • Agee, E. M., 1987: Mesoscale cellular convection over the oceans. Dyn. Atmos. Oceans, 10 , 317341.

  • Albrecht, B. A., 1979: A model of the thermodynamic structure of the trade-wind boundary layer. Part II: Applications. J. Atmos. Sci., 36 , 9098.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1993: Effects of precipitation on the thermodynamic structure of the trade-wind boundary layer. J. Geophys. Res., 98 , 73237337.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. S. Bretherton, and D. Johnson, 1995: The Atlantic Stratocumulus Transition Experiment (ASTEX). Bull. Amer. Meteor. Soc., 76 , 889904.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., A. K. Betts, W. H. Schubert, and S. K. Cox, 1979: A model of the thermodynamic structure of the trade-wind boundary layer. Part I: Theoretical development and sensitivity tests. J. Atmos. Sci., 36 , 7389.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99 , 178196.

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677692.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and R. Bores, 1990: A cloudiness transition in a marine boundary layer. J. Atmos. Sci., 47 , 14801497.

  • Betts, A. K., C. S. Bretherton, and E. Klinker, 1995: Relation between mean boundary-layer structure and cloudiness at the R/V Valdivia during ASTEX. J. Atmos. Sci., 52 , 27522762.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale eta model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

  • Bretherton, C. S., E. Klinker, A. K. Betts, and J. A. Coakley, 1995: Comparison of ceilometer, satellite, and synoptic measurements of boundary layer cloudiness and the ECMWF diagnostic cloud parameterization scheme during ASTEX. J. Atmos. Sci., 52 , 27362751.

    • Search Google Scholar
    • Export Citation
  • Chappell, C. F., E. L. Magaziner, and J. M. Fritsch, 1974: On the computation of isobaric wetbulb temperature and saturation temperature over ice. J. Appl. Meteor., 13 , 726728.

    • Search Google Scholar
    • Export Citation
  • Cuijpers, J. W. M., and P. G. Duynkerke, 1995: Large eddy simulation of trade-wind cumulus clouds. J. Atmos. Sci., 52 , 650666.

  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37 , 131146.

  • Del Genio, A. D., M-S. Yao, W. Kovari, and K. K-W. Lo, 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9 , 270304.

    • Search Google Scholar
    • Export Citation
  • Deng, A., 1999: A shallow convection parameterization scheme for mesoscale models. Ph.D. thesis, The Pennsylvania State University, 152 pp.

    • Search Google Scholar
    • Export Citation
  • Deng, A., N. L. Seaman, and J. S. Kain, 2003: A shallow-convection parameterization for mesoscale models. Part II: Verification and sensitivity studies. J. Atmos. Sci., 60 , 5778.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure system. Part I: Convective parameterization. J. Atmos. Sci., 37 , 17221733.

    • Search Google Scholar
    • Export Citation
  • Gayno, G. A., 1994: Development of a higher-order, fog-producing boundary layer model suitable for use in numerical weather prediction. M.S. thesis, Department of Meteorology, The Pennsylvania State University, 104 pp.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and A. R. Brown, 1999: A similarity hypothesis for shallow-cumulus transports. Quart. J. Roy. Meteor. Soc., 125 , 19131936.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., 2001: Estimation of entrainment rate in simple models of convective clouds. Quart. J. Roy. Meteor. Soc., 127 , 5372.

  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR TN-398-STR, 138 pp.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization in mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kreitzberg, C. W., and D. J. Perkey, 1976: Release of potential instability. Part I: A sequential plume model within a hydrostatic primitive equation model. J. Atmos. Sci., 33 , 456475.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., R. J. Reed, and Y. Liu, 1996: The ERICA IOP5 storm: Mesoscale cyclogenesis and precipitation parameterization. Mon. Wea. Rev., 124 , 14091434.

    • Search Google Scholar
    • Export Citation
  • Lamb, R. G., 1982: Diffusion in the convective boundary layer. Atmospheric Turbulence and Air Pollution Modelling, F. T. M. Nieuwstadt and H. van Dop, Eds., Reidel, 159–229.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94 , 292309.

  • MacVean, M. K., and P. J. Mason, 1990: Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models. J. Atmos. Sci., 47 , 10121030.

    • Search Google Scholar
    • Export Citation
  • McHenry, J. N., J. S. Kain, and J. E. Pleim, 1996: Development and testing of a Kain–Fritsch-based deep convective cloud chemistry scheme for incorporation into multiscale air quality models. Preprint, Ninth Joint Conf. on Applications of Air Pollution Meteorology with A&WMA, Atlanta, GA, Amer. Meteor. Soc., 207–212.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37 , 125130.

  • Rao, G., 1996: Large eddy simulation of turbulent flow in a marine convective boundary layer with snow. J. Atmos. Sci., 53 , 86100.

  • Schlesinger, R. E., 1984: Effects of the pressure perturbation field in numerical model of unidirectionally sheared thunderstorm convection: Two versus three dimensions. J. Atmos. Sci., 41 , 15711587.

    • Search Google Scholar
    • Export Citation
  • Shafran, P. C., N. L. Seaman, and G. A. Gayno, 2000: Evaluation of numerical predictions of boundary-layer structure during the Lake Michigan Ozone Study (LMOS). J. Appl. Meteor., 39 , 412426.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., 1997: The impact of mesoscale convective-system potential vorticity anomalies on numerical-weather-prediction forecasts. Quart. J. Roy. Meteor. Soc., 123 , 7388.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus. J. Atmos. Sci., 52 , 650666.

  • Siebesma, A. P., and A. A. M. Holtslag, 1996: Model impacts of entrainment and detrainment rates in shallow cumulus convection. J. Atmos. Sci., 53 , 23542364.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., 1983: Cumulus clouds: Interactions between laboratory experiments and observations as foundations for models. Mesoscale Meteorology, D. K. Lilly and T. GalChen, Eds., Reidel, 399–412.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97 , 471489.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme of cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121 , 30403060.

  • Wang, S., 1993: Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation. J. Atmos. Sci., 50 , 40014021.

    • Search Google Scholar
    • Export Citation
  • Weil, J. C., 1988: Dispersion in the convective boundary layer. Lectures on Air Pollution Modeling, A. Venkatram and J. C. Wyngaard, Eds., Amer. Meteor. Soc., 167–227.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., S. Argentini, and A. Boone, 1996: The role of the land surface in controlling daytime cloud amount: Two case studies in the GCIP-SW area. J. Geophys. Res., 101D , 73597370.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the Stratocumulus to trade cumulus transition. J. Atmos. Sci., 54 , 168192.

    • Search Google Scholar
    • Export Citation
  • Xu, K., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53 , 30483102.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., 1987: Mixed layer spectra from aircraft measurements. J. Atmos. Sci., 44 , 12511256.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 6 6 6

A Shallow-Convection Parameterization for Mesoscale Models. Part I: Submodel Description and Preliminary Applications

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

A shallow-convection parameterization suitable for both marine and continental regimes is developed for use in mesoscale models. The scheme is closely associated with boundary layer turbulence processes and can transition to either a deep-convection scheme in conditionally unstable environments or to an explicit (resolved scale) moisture scheme in moist stable environments. The shallow-convection mass-closure assumption uses a hybrid formulation based on boundary layer turbulent kinetic energy (TKE) and convective available potential energy (CAPE), while the convective trigger is primarily a function of boundary layer TKE. Secondary subgrid clouds having nearly neutral buoyancy can form as shallow-convective updrafts detrain mass to their environment. Called neutrally buoyant clouds (NBCs), these can be dissipated through lateral and vertical mixing, light precipitation, ice-crystal settling, and cloud-top entrainment instability (CTEI).

The shallow-convection scheme is developed and demonstrated in a 1D version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) mesoscale model (MM5) which includes a 1.5-order turbulence parameterization that predicts the TKE, an atmospheric radiation submodel, and an explicit moisture submodel. The radiation calculation includes the feedback effects of the subgrid NBCs predicted by the shallow-convection parameterization. Results from initial applications in both marine and continental environments are consistent with the observed characteristics of the mesoscale thermodynamic structures and local cloud-field parameters. A subsequent paper (Part II) presents more complete verifications in different environments and results of sensitivity experiments.

Corresponding author address: Aijun Deng, Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802. Email: deng@essc.psu.edu

Abstract

A shallow-convection parameterization suitable for both marine and continental regimes is developed for use in mesoscale models. The scheme is closely associated with boundary layer turbulence processes and can transition to either a deep-convection scheme in conditionally unstable environments or to an explicit (resolved scale) moisture scheme in moist stable environments. The shallow-convection mass-closure assumption uses a hybrid formulation based on boundary layer turbulent kinetic energy (TKE) and convective available potential energy (CAPE), while the convective trigger is primarily a function of boundary layer TKE. Secondary subgrid clouds having nearly neutral buoyancy can form as shallow-convective updrafts detrain mass to their environment. Called neutrally buoyant clouds (NBCs), these can be dissipated through lateral and vertical mixing, light precipitation, ice-crystal settling, and cloud-top entrainment instability (CTEI).

The shallow-convection scheme is developed and demonstrated in a 1D version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) mesoscale model (MM5) which includes a 1.5-order turbulence parameterization that predicts the TKE, an atmospheric radiation submodel, and an explicit moisture submodel. The radiation calculation includes the feedback effects of the subgrid NBCs predicted by the shallow-convection parameterization. Results from initial applications in both marine and continental environments are consistent with the observed characteristics of the mesoscale thermodynamic structures and local cloud-field parameters. A subsequent paper (Part II) presents more complete verifications in different environments and results of sensitivity experiments.

Corresponding author address: Aijun Deng, Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802. Email: deng@essc.psu.edu

Save