• Anderson, T. L., D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, and D. J. Jaffe, 1999: Aerosol backscatter fraction and single scattering albedo: Measured values and uncertainties at a coastal station in the Pacific NW. J. Geophys. Res., 104 , 2679326807.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., S. J. Masonis, D. S. Covert, R. J. Charlson, and M. J. Rood, 2000: In-situ measurement of the aerosol extinction-to-backscatter ratio at a polluted, continental site. J. Geophys. Res., 105 , 2690726915.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., and R. A. Houze, 1972: Analysis of the structure of precipitation patterns in New England. J. Appl. Meteor., 11 , 926935.

    • Search Google Scholar
    • Export Citation
  • Benkovitz, C. M., and S. E. Schwartz, 1997: Evaluation of modeled sulfate and SO2 over North America and Europe for four seasonal months in 1986–1987. J. Geophys. Res., 102 , 2530525338.

    • Search Google Scholar
    • Export Citation
  • Benkovitz, C. M., R. C. Easter, S. Nemesure, R. Wagener, and S. E. Schwartz, 1994: Sulfate over the North Atlantic and adjacent continental regions: Evaluation for October and November 1986 using a three-dimensional model driven by observation-derived meteorology. J. Geophys. Res., 99 , 2072520756.

    • Search Google Scholar
    • Export Citation
  • Bolin, B., and H. Rodhe, 1973: A note on the concepts of age distribution and transit time in natural reservoirs. Tellus, 25 , 5862.

  • Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys., 18 , 683697.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., and H. Rodhe, 1982: Factors controlling the acidity of natural rainwater. Nature, 295 , 683685.

  • Charlson, R. J., A. H. Vanderpol, D. S. Covert, A. P. Waggoner, and N. C. Ahlquist, 1974: H2SO4/(NH4)2SO4 background aerosol: Optical detection in St. Louis region. Atmos. Environ., 8 , 12571267.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255 , 423430.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., T. L. Anderson, and H. Rodhe, 1999: Direct climate forcing by anthropogenic aerosols: Quantifying the link between radiation and sulfate models. Beitr. Phys. Atmos., 72 , 7994.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., S. Howell, P. K. Quinn, T. S. Bates, J. A. Ogren, E. Andrews, A. Jefferson, and A. Massling, 2002: The INDOEX aerosol: A comparison and summary of chemical, microphysical, and optical properties from land, ship, and aircraft. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Delene, D. J., and J. A. Ogren, 2002: Variability of aerosol optical properties at four North American surface monitoring sites. J. Atmos. Sci., 59 , 11351150.

    • Search Google Scholar
    • Export Citation
  • Feijt, A., and H. Jonker, 2000: Comparison of scaling parameters from spatial and temporal distributions of cloud properties. J. Geophys. Res., 105 , 2908929097.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., D. D. Turner, L. H. Brasseur, W. F. Feltz, O. Dubovik, and T. P. Tooman, 2001: Raman lidar measurements of the aerosol extinction-to-backscatter ratio over the Southern Great Plains. J. Geophys. Res., 106 , 2033320347.

    • Search Google Scholar
    • Export Citation
  • Galloway, J. N., G. E. Likens, and M. Hawley, 1984: Acid precipitation: Natural versus anthropogenic components. Science, 226 , 829831.

    • Search Google Scholar
    • Export Citation
  • Glickman, T. S., Ed.,. . 2000: Glossary of Meteorology. American Meteorological Society, 2d ed., 855 pp.

  • Hamrud, M., 1983: Residence time and spatial variability for gases in the atmosphere. Tellus, 35B , 295303.

  • Harrison, L., and J. Michalsky, 1994: Objective algorithms for the retrieval of optical depths from ground-based measurements. Appl. Opt., 33 , 51265132.

    • Search Google Scholar
    • Export Citation
  • Heintzenberg, J., and L. Bäcklin, 1983: A high sensitivity integrating nephelometer for airborne air pollution studies. Atmos. Environ., 17 , 433436.

    • Search Google Scholar
    • Export Citation
  • Heintzenberg, J., and C. Leck, 1994: Seasonal variation of the atmospheric aerosol near the top of the marine boundary layer over Spitsbergen related to the Arctic sulphur cycle. Tellus, 46B , 5267.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 2002: Clean air slots amid atmospheric pollution. Nature, 415 , 861.

  • Huebert, B. J., G. L. Lee, and W. L. Warren, 1990: Aerosol inlet passing efficiency measurement. J. Geophys. Res., 95 , 1636916381.

  • IPCC, 2001: Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the International Panel on Climate Change. Cambridge University Press, 572 pp.

    • Search Google Scholar
    • Export Citation
  • Isaaks, E. H., and R. M. Srivastava, 1989: An Introduction to Applied Geostatistics. Oxford University Press, 561 pp.

  • Jobson, B. T., S. A. McKeen, D. D. Parrish, F. C. Fehsenfeld, D. R. Blake, A. H. Goldstein, S. M. Schauffler, and J. W. Elkins, 1999: Trace gas mixing ratio variability versus lifetime in the troposphere and stratosphere: Observations. J. Geophys. Res., 104 , 1609116113.

    • Search Google Scholar
    • Export Citation
  • Junge, C. E., 1974: Residence time and variability of tropospheric trace gases. Tellus, 26 , 477487.

  • Junge, C. E., 1975: The possible influence of aerosols on the general circulation and climate and possible approaches for modeling. The Physical Basis of Climate and Climate Modelling, GARP Publication Series, Vol. 16, WMO–ICSU, 244–251.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., B. N. Holben, D. Tanre, I. Slutsker, A. Smirnov, and T. F. Eck, 2000: Will aerosol measurements from Terra and Aqua polar orbiting satellites represent daily aerosol abundance and properties? Geophys. Res. Lett., 27 , 38613864.

    • Search Google Scholar
    • Export Citation
  • Kent, G. S., C. R. Trepte, K. M. Skeens, and D. M. Winker, 1998: LITE and SAGE II measurements of aerosols in the Southern Hemisphere upper troposphere. J. Geophys. Res., 103 , 1911119127.

    • Search Google Scholar
    • Export Citation
  • Koloutsou-Vakakis, S., M. J. Rood, A. Nenes, and C. Pilinis, 1998: Modeling of aerosol properties related to direct climate forcing. J. Geophys. Res., 103 , 1700917032.

    • Search Google Scholar
    • Export Citation
  • Koloutsou-Vakakis, S., C. M. Carrico, Z. Li, M. J. Rood, and J. A. Ogren, 1999: Aerosol properties and radiative forcing at an anthropogenically perturbed midlatitude Northern Hemisphere continental site. Phys. Chem. Earth Pt. C., 24 , 541546.

    • Search Google Scholar
    • Export Citation
  • Lafleur, B. G., 1998: A low turbulence inlet for airborne aerosol sampling. M.S. thesis, University of Denver, 99 pp.

  • Likens, G. E., Ed.,. . 1981: Some Perspectives of the Major Biogeochemical Cycles. Wiley and Sons, 170 pp.

  • Masonis, S. J., K. Franke, A. Ansmann, D. Mueller, D. Althausen, J. A. Ogren, A. Jefferson, and P. J. Sheridan, 2002: An intercomparison of aerosol light extinction and 180° backscatter as derived using in situ instruments and Raman lidar during the INDOEX field campaign. J. Geophys. Res.,107 (D19), 8014, doi: 10.1029/2000JD000035.

    • Search Google Scholar
    • Export Citation
  • Michaels, R. A., and M. T. Kleinman, 2000: Incidence and apparent health significance of brief airborne particle excursions. Aerosol Sci. Technol., 32 , 93105.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., I. V. Geogdzhayev, B. Cairns, W. B. Rossow, and A. A. Lacis, 1999: Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: Sensitivity analysis and preliminary results. Appl. Optics, 38 , 73257341.

    • Search Google Scholar
    • Export Citation
  • Mourad, P. D., and B. A. Walter, 1996: Analysis of mesoscale linear features observed in the Arctic atmospheric boundary layer. Mon. Wea. Rev., 124 , 19241940.

    • Search Google Scholar
    • Export Citation
  • Ott, W. R., 1990: A physical explanation of the lognormality of pollutant concentrations. J. Air Waste Manage. Assoc., 40 , 13781383.

  • Quinn, P. K., S. Marshall, T. S. Bates, D. S. Covert, and V. N. Kapustin, 1995: Comparison of measured and calculated aerosol properties relevant to the direct radiative forcing of tropospheric sulfate aerosol on climate. J. Geophys. Res., 100 , 89778991.

    • Search Google Scholar
    • Export Citation
  • Schwartz, S. E., 1989: Acid deposition: Unraveling a regional phenomenon. Science, 243 , 753762.

  • Seinfeld, J. H., and Coauthors. 1996: Aerosol Radiative Forcing and Climate Change. National Research Council, National Academy Press, 161 pp.

    • Search Google Scholar
    • Export Citation
  • Thomason, L. W., B. M. Herman, and J. A. Reagan, 1983: The effect of atmospheric attenuators with structured vertical distributions on air-mass determinations and Langley plot analysis. J. Atmos. Sci., 40 , 18511858.

    • Search Google Scholar
    • Export Citation
  • Vanderpol, A. H., F. D. Carsey, D. S. Covert, R. J. Charlson, and A. P. Waggoner, 1975: Aerosol chemical parameters and air mass character in the St. Louis region. Science, 190 , 570.

    • Search Google Scholar
    • Export Citation
  • Waggoner, A. P., R. E. Weiss, N. C. Ahlquist, D. S. Covert, S. Will, and R. J. Charlson, 1981: Optical characteristics of atmospheric aerosols. Atmos. Environ., 15 , 18911909.

    • Search Google Scholar
    • Export Citation
  • White, W. H., 1990: The components of atmospheric light extinction: A survey of ground-level budgets. Atmos. Environ., 24A , 26732679.

    • Search Google Scholar
    • Export Citation
  • White, W. H., E. S. Macias, R. C. Nininger, and D. Schorran, 1994: Size-resolved measurements of light scattering by ambient particles in the southwestern U.S.A. Atmos. Environ., 28 , 909921.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., R. H. Couch, and P. McCormick, 1996: An overview of LITE: NASA's Lidar In-space Technology Experiment. Proc. IEEE, 84 , 164180.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 10 10 10

Mesoscale Variations of Tropospheric Aerosols

View More View Less
  • 1 University of Washington, Seattle, Washington
  • | 2 NASA Langley Research Center, Hampton, Virginia
  • | 3 NOAA/Climate Monitoring and Diagnostics Laboratory, Boulder, Colorado
  • | 4 Stockholm University, Stockholm, Sweden
Restricted access

Abstract

Tropospheric aerosols are calculated to cause global-scale changes in the earth's heat balance, but these forcings are space/time integrals over highly variable quantities. Accurate quantification of these forcings will require an unprecedented synergy among satellite, airborne, and surface-based observations, as well as models. This study considers one aspect of achieving this synergy—the need to treat aerosol variability in a consistent and realistic way. This need creates a requirement to rationalize the differences in spatiotemporal resolution and coverage among the various observational and modeling approaches. It is shown, based on aerosol optical data from diverse regions, that mesoscale variability (specifically, for horizontal scales of 40–400 km and temporal scales of 2–48 h) is a common and perhaps universal feature of lower-tropospheric aerosol light extinction. Such variation is below the traditional synoptic or “airmass” scale (where the aerosol is often assumed to be essentially homogeneous except for plumes from point sources) and below the scales that are readily resolved by chemical transport models. The present study focuses on documenting this variability. Possible physical causes and practical implications for coordinated observational strategies are also discussed.

Corresponding author address: Dr. Theodore Anderson, Department of Atmospheric Sciences, Box 351640, University of Washington, Seattle, WA 98195-1640. Email: tadand@u.washington.edu

Abstract

Tropospheric aerosols are calculated to cause global-scale changes in the earth's heat balance, but these forcings are space/time integrals over highly variable quantities. Accurate quantification of these forcings will require an unprecedented synergy among satellite, airborne, and surface-based observations, as well as models. This study considers one aspect of achieving this synergy—the need to treat aerosol variability in a consistent and realistic way. This need creates a requirement to rationalize the differences in spatiotemporal resolution and coverage among the various observational and modeling approaches. It is shown, based on aerosol optical data from diverse regions, that mesoscale variability (specifically, for horizontal scales of 40–400 km and temporal scales of 2–48 h) is a common and perhaps universal feature of lower-tropospheric aerosol light extinction. Such variation is below the traditional synoptic or “airmass” scale (where the aerosol is often assumed to be essentially homogeneous except for plumes from point sources) and below the scales that are readily resolved by chemical transport models. The present study focuses on documenting this variability. Possible physical causes and practical implications for coordinated observational strategies are also discussed.

Corresponding author address: Dr. Theodore Anderson, Department of Atmospheric Sciences, Box 351640, University of Washington, Seattle, WA 98195-1640. Email: tadand@u.washington.edu

Save