• An, S-I., F-F. Jin, and I-S. Kang, 1999: The role of zonal advection feedback in phase transition and growth of ENSO in the Cane–Zebiak model. J. Meteor. Soc. Japan, 77 , 11511160.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., J. D. Neelin, and D. Gutzler, 1997: Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J. Climate, 10 , 14731487.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 1979: The response of an equatorial ocean to simple wind stress patterns. Part 1: Model formulation and analytical results. J. Mar. Sci., 37 , 233252.

    • Search Google Scholar
    • Export Citation
  • Cane, M. E., and E. S. Sarachik, 1981: The response of a linear baroclinic equatorial ocean to periodic forcing. J. Mar. Res., 39 , 651693.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, and X. Cao, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–1995. Part II: Results. J. Phys. Oceanogr., 30 , 311326.

    • Search Google Scholar
    • Export Citation
  • Chang, P., J. Link, L. Hong, and M. Flügel, 1996: Chaotic dynamics versus stochastic processes in El Niño–Southern Oscillation in coupled ocean–atmosphere models. Physica D, 98 , 301320.

    • Search Google Scholar
    • Export Citation
  • Doedel, E. J., 1981: AUTO, a program for the automatic bifurcation analysis of autonomous systems. Congr. Numer., 30 , 265384.

  • Doedel, E. J., H. B. Keller, and J. P. Kernevez, 1991: Numerical analysis and control of bifurcation problems. (I) Bifurcation in finite dimensions. Int. J. Bifurcation Chaos, 1 , 493520.

    • Search Google Scholar
    • Export Citation
  • Douglass, D. H., D. R. Abrams, D. M. Baranson, and B. D. Clader, cited 2002: On the Nature of the El Niño/La Niña events. Los Alamos Preprint physics/0203016, 22 pp. [Available online at http://arxiv.org/abs/physics/0203016.].

    • Search Google Scholar
    • Export Citation
  • Eckert, C., and M. Latif, 1997: Predictability of a stochastically forced hybrid coupled model of El Niño. J. Climate, 10 , 14881504.

    • Search Google Scholar
    • Export Citation
  • Glenndinning, P., and C. Sparrow, 1984: Local and global behavior near homoclinic orbits. J. Stat. Phys., 35 , 645697.

  • Graham, N. E., 1994: Decadal-scale climate variability in the 1970s and 1980s: Observations and model results. Climate Dyn., 10 , 135159.

    • Search Google Scholar
    • Export Citation
  • Gu, D-F., and S. G. H. Philander, 1995: Secular changes of annual and interannual variability in the Tropics during the past century. J. Climate, 8 , 864876.

    • Search Google Scholar
    • Export Citation
  • Gu, D-F., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1996: Tropical ocean–atmosphere interaction, the Pacific cold tongue, and the El Niño–Southern Oscillation. Science, 274 , 7678.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F-F., 1998: A simple model for the Pacific cold tongue and ENSO. J. Atmos. Sci., 55 , 24582469.

  • Jin, F-F., and S-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26 , 29892992.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., J. D. Neelin, and M. Ghil, 1994: El Niño on the Devil's Staircase: Annual subharmonic steps to chaos. Science, 264 , 7072.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11 , 28042822.

  • Kleeman, R., J. P. McCreary Jr., and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26 , 17431746.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and R. H. Zhang, 1999: Propagation and mechanism of decadal upper ocean variability in the North Pacific. Geophys. Res. Lett., 26 , 739742.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12 , 11991220.

  • Münnich, M., M. A. Cane, and S. E. Zebiak, 1991: A study of self-excited oscillations of the tropical ocean–atmosphere system. Part II: Nonlinear cases. J. Atmos. Sci., 48 , 12381248.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F. F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 (C7) 1426114290.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., T. P. Barnett, and M. Latif, 1999: Connections between the Pacific Ocean Tropics and midlatitudes on decadal timescales. J. Climate, 13 , 11731194.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., 2000: A decadal spiciness mode in the Tropics. Geophys. Res. Lett., 27 , 257260.

  • Shil'nikov, L. P., 1965: A case of the existence of a denumerable set of periodic motions. Sov. Math. Dokl., 6 , 163166.

  • Shil'nikov, L. P., 1970: A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type. Math. USSR Sbornik, 10 , 91102.

    • Search Google Scholar
    • Export Citation
  • Sun, D. Z., 2000: Global climate change and ENSO: A theoretical framework. El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation, Multiscale Variability and Global and Regional Impacts. H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 443–463.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., 2002: Decadal ENSO amplitude modulations: A nonlinear mechanism. Global Planet. Change, in press.

  • Timmermann, A., and F-F. Jin, 2002: A nonlinear mechanism for decadal El Niño amplitude changes. Geophys. Res. Lett.,29, 1003, doi: 10.1029/2001GL013369.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., M. Latif, A. Bacher, J. Oberhuber, and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398 , 694696.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., H. U. Voss, and R. Pasmanter, 2001: Empirical dynamical system modeling of ENSO using nonlinear inverse techniques. J. Phys. Oceanogr., 31 , 15791598.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and P. J. Webster, 1999: Interdecadal changes in the ENSO–monsoon system. J. Climate, 12 , 26792690.

  • Tudhope, A., and Coauthors. 2001: Variability in the El Niño–Southern Oscillation through a glacial–interglacial cycle. Science, 291 , 15111517.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific Ocean–atmosphere oscillator. Science, 264 , 7274.

    • Search Google Scholar
    • Export Citation
  • Wang, B., A. Barcilon, and Z. Fang, 1999: Stochastic dynamics of El Niño–Southern Oscillation. J. Atmos. Sci., 56 , 523.

  • Weaver, A. J., 1999: Extratropical subduction and decadal modulation of El Niño. Geophys. Res. Lett., 26 , 743746.

  • Wiggins, S., 1988: Global Bifurcations and Chaos: Analytical Methods. Applied Mathematical Sciences Series, Vol. 73, Springer-Verlag, 494 pp.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

  • Zhang, R. H., L. M. Rothstein, and A. J. Busalacchi, 1998: Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature, 391 , 879883.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 15
PDF Downloads 39 39 39

A Nonlinear Theory for El Niño Bursting

View More View Less
  • 1 Institute for Marine Research, Kiel, Germany
  • | 2 Department of Meteorology, School of Ocean and Earth Science and Technology, Honolulu, Hawaii
  • | 3 Institute for Marine Research, Kiel, Germany
Restricted access

Abstract

A new mechanism is proposed that explains two key features of the observed El Niño–Southern Oscillation (ENSO) phenomenon—its irregularity and decadal amplitude changes. Using a low-order ENSO model, the authors show that the nonlinearities in the tropical heat budget can lead to bursting behavior characterized by decadal occurrences of strong El Niño events. La Niña events are not affected, a feature that is also seen in ENSO observations. One key result of this analysis is that decadal variability in the Tropics can be generated without invoking extratropical processes or stochastic forcing. The El Niño bursting behavior simulated by the low-order ENSO model can be understood in terms of the concept of homoclinic and heteroclinic connections. It is shown that this new model for ENSO amplitude modulations and irregularity, although difficult to prove, might explain some features of ENSO dynamics seen in more complex climate models and the observations.

Corresponding author address: Dr. Axel Timmermann, Institute für Meereskunde, Theorie und Modellierung, Düsternbrooker Weg 20, Kiel, D-24105, Germany. Email: atimmermann@ifm.uni-kiel.de

Abstract

A new mechanism is proposed that explains two key features of the observed El Niño–Southern Oscillation (ENSO) phenomenon—its irregularity and decadal amplitude changes. Using a low-order ENSO model, the authors show that the nonlinearities in the tropical heat budget can lead to bursting behavior characterized by decadal occurrences of strong El Niño events. La Niña events are not affected, a feature that is also seen in ENSO observations. One key result of this analysis is that decadal variability in the Tropics can be generated without invoking extratropical processes or stochastic forcing. The El Niño bursting behavior simulated by the low-order ENSO model can be understood in terms of the concept of homoclinic and heteroclinic connections. It is shown that this new model for ENSO amplitude modulations and irregularity, although difficult to prove, might explain some features of ENSO dynamics seen in more complex climate models and the observations.

Corresponding author address: Dr. Axel Timmermann, Institute für Meereskunde, Theorie und Modellierung, Düsternbrooker Weg 20, Kiel, D-24105, Germany. Email: atimmermann@ifm.uni-kiel.de

Save