• Andreassen, Ø, C. E. Wasberg, D. C. Fritts, and J. R. Isler, 1994: Gravity wave breaking in two and three dimensions. 1. Model description and comparison of two-dimensional evolutions. J. Geophys. Res., 99 , 80958108.

    • Search Google Scholar
    • Export Citation
  • Andreassen, Ø, Hvidsten, D. C. Fritts, and S. Arendt, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 1: Initial instability evolution. J. Fluid Mech., 367 , 2746.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Bacmeister, J. T., and M. R. Schoeberl, 1989: Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci., 46 , 21092134.

    • Search Google Scholar
    • Export Citation
  • Beagley, S. R., J. de Grandpré, J. N. Koshyk, N. A. McFarlane, and T. G. Shepherd, 1997: Radiative-dynamical climatology of the first-generation Canadian middle atmosphere model. Atmos.–Ocean, 35 , 293331.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., M. E. McIntyre, and J. F. Scinocca, 1999: On shear-generated gravity waves that reach the mesosphere. Part I: Wave generation. J. Atmos. Sci., 56 , 37493763.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., and J. R. Grant, 1984: Shear excitation of gravity waves. Part II: Upscale scattering from Kelvin–Helmholtz waves. J. Atmos. Sci., 41 , 22782288.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1987: Effect of nonlinear instability on gravity wave momentum transport. J. Atmos. Sci., 44 , 31883209.

  • Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49 , 14271442.

    • Search Google Scholar
    • Export Citation
  • Franke, P. M., 1996: Nonlinear behavior in the propagation of atmospheric gravity waves. Ph.D. thesis, University of Illinois at Urbana–Champaign, 139 pp.

    • Search Google Scholar
    • Export Citation
  • Franke, P. M., and W. A. Robinson, 1999: Nonlinear behavior in the propagation of atmospheric gravity waves. J. Atmos. Sci., 56 , 30103027.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., 1984: Shear excitation of atmospheric gravity waves. Part II: Nonlinear radiation from a free shear layer. J. Atmos. Sci., 41 , 524537.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and R. A. Vincent, 1987: Mesospheric momentum flux studies at Adelaide, Australia: Observations and a gravity wave/tidal interaction model. J. Atmos. Sci., 44 , 605619.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and L. Yuan, 1989: Measurement of momentum fluxes near the summer mesopause at Poker Flat, Alaska. J. Atmos. Sci., 46 , 25692579.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Z. Luo, 1992: Gravity wave excitation by geostrophic adjustment of the jet stream. Part I: Two-dimensional forcing. J. Atmos. Sci., 49 , 681697.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Yuan, M. H. Hitchman, L. Coy, E. Kudeki, and R. F. Woodman, 1992: Dynamics of the equatorial mesosphere observed using the Jicamarca MST radar during June and August 1987. J. Atmos. Sci., 49 , 23532371.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., J. R. Isler, and Ø Andreassen, 1994: Gravity wave breaking in two and three dimensions. 2. Three-dimensional evolution and instability structure. J. Geophys. Res., 99 , 81098123.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. Arendt, and Ø Andreassen, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 2: Vortex interactions and transition to turbulence. J. Fluid Mech., 367 , 4765.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. L. Vadas, and Y. Yamada, 2002: An estimate of strong local body forcing and gravity wave radiation based on OH airglow and meteor radar observations. Geophys. Res. Lett.,29, 1429, doi: 10.1029/2001GL013753.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and S. Solomon, 1985: The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res., 90 , 38503868.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, J. D. Mahlman, and L. J. Umscheid, 1995: Climatology of the SKYHI troposphere–stratosphere–mesosphere general circulation model. J. Atmos. Sci., 52 , 543.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40 , 24972507.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and M. J. Alexander, 1999: Gravity waves in the mesosphere generated by tropospheric convection. Tellus, 51A-B , 4558.

  • Huang, C. M., F. S. Kuo, H. Y. Lue, and C. H. Liu, 1992: Numerical simulations of the saturated gravity wave spectra in the atmosphere. J. Atmos. Terr. Phys., 54 , 129142.

    • Search Google Scholar
    • Export Citation
  • Huang, T. Y. W., and A. K. Smith, 1995: Dynamical and chemical feedback in a two-dimensional interactive model of the middle atmosphere. J. Geophys. Res., 100 , 1108511104.

    • Search Google Scholar
    • Export Citation
  • Klostermeyer, J., 1991: Two- and three-dimensional parametric instabilities in finite amplitude internal gravity waves. Geophys. Astrophys. Fluid Dyn., 64 , 125.

    • Search Google Scholar
    • Export Citation
  • LeLong, M-P., and T. J. Dunkerton, 1998: Inertia-gravity wave breaking in three dimensions. Part I: Convectively stable waves. J. Atmos. Sci., 55 , 24732488.

    • Search Google Scholar
    • Export Citation
  • Liu, H-L., P. B. Hays, and R. G. Roble, 1999: A numerical study of gravity wave breaking and impacts on turbulence and mean state. J. Atmos. Sci., 56 , 21522177.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., and D. C. Fritts, 1993: Gravity wave excitation by geostrophic adjustment of the jet stream. Part II: Three-dimensional forcing. J. Atmos. Sci., 50 , 104115.

    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction of oceanic internal waves. J. Geophys. Res., 82 , 13971412.

  • McLandress, C., 1998: On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models. J. Atmos. Solar Terr. Phys., 60 , 13571383.

    • Search Google Scholar
    • Export Citation
  • Pfister, L., and Coauthors. 1993: Gravity waves generated by a tropical cyclone during the STEP tropical field program: A case study. J. Geophys. Res., 98 , 86118638.

    • Search Google Scholar
    • Export Citation
  • Prusa, J. M., P. K. Smolarkiewicz, and R. R. Garcia, 1996: Propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing. J. Atmos. Sci., 53 , 21862216.

    • Search Google Scholar
    • Export Citation
  • Reid, I. M., and R. A. Vincent, 1987: Measurements of mesospheric gravity wave momentum fluxes and mean flow accelerations at Adelaide, Australia. J. Atmos. Terr. Phys., 49 , 443460.

    • Search Google Scholar
    • Export Citation
  • Reid, I. M., R. Rüster, P. Czechowsky, and G. Schmidt, 1988: VHF radar measurements of momentum flux in the summer polar mesosphere over the Andenes (69°N, 16°E), Norway. Geophys. Res. Lett., 15 , 12631266.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Suozzo, N. K. Balachandran, A. Lacis, and G. Russell, 1988: The GISS global climate–middle atmosphere model. Part I: Model structure and climatology. J. Atmos. Sci., 45 , 329370.

    • Search Google Scholar
    • Export Citation
  • Roble, R. G., and E. C. Ridley, 1994: A thermosphere–ionosphere–mesosphere-electrodynamics general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30–500 km). Geophys. Res. Lett., 21 , 417420.

    • Search Google Scholar
    • Export Citation
  • Satomura, T., and K. Sato, 1999: Secondary generation of gravity waves associated with the breaking of mountain waves. J. Atmos. Sci., 56 , 38473858.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., and R. Ford, 2000: The nonlinear forcing of large-scale internal gravity waves by stratified shear instability. J. Atmos. Sci., 57 , 653672.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., Y. Murayama, M. Yamamoto, S. Kato, and S. Fukao, 1990: Seasonal variation of momentum flux in the mesosphere observed with the MU radar. Geophys. Res. Lett., 17 , 725728.

    • Search Google Scholar
    • Export Citation
  • Vadas, S. L., and D. C. Fritts, 2001a: Gravity wave radiation and mean responses to local body forces in the atmosphere. J. Atmos. Sci., 58 , 22492279.

    • Search Google Scholar
    • Export Citation
  • Vadas, S. L., and D. C. Fritts, 2001b: Mechanism for the generation of secondary waves in wave breaking regions. Preprints, 13th Conf. on Atmospheric and Oceanic Fluid Dynamics, Breckenridge, CO, Amer. Meteor. Soc., 18–21.

    • Search Google Scholar
    • Export Citation
  • Vadas, S. L., and D. C. Fritts, 2002: The importance of spatial variability in the generation of secondary gravity waves from local body forces. Geophys. Res. Lett.,29, 1984, doi: 10.1029/2002GL015574.

    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 1995: The instability of internal gravity waves to localized disturbances. Ann. Geophys., 13 , 196210.

  • Walterscheid, R. L., and G. Schubert, 1990: Nonlinear evolution of an upward propagating gravity wave: Overturning, convection, transcience, and turbulence. J. Atmos. Sci., 47 , 101125.

    • Search Google Scholar
    • Export Citation
  • Yamada, Y., H. Fukunishi, T. Nakamura, and T. Tsuda, 2001: Breaking of small-scale gravity wave and transition to turbulence observed in OH airglow. Geophys. Res. Lett., 28 , 21532156.

    • Search Google Scholar
    • Export Citation
  • Yeh, K. C., and C. H. Liu, 1981: The instability of atmospheric gravity waves through wave–wave interactions. J. Geophys. Res., 86 , 97229728.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., and J. R. Holton, 1987: Mean fields induced by local gravity-wave forcing in the middle atmosphere. J. Atmos. Sci., 44 , 620630.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 2 2 2

Mechanism for the Generation of Secondary Waves in Wave Breaking Regions

View More View Less
  • 1 North West Research Associates, Inc., Colorado Research Associates Division, Boulder, Colorado
Restricted access

Abstract

The authors propose that the body force that accompanies wave breaking is potentially an important linear mechanism for generating secondary waves that propagate into the mesosphere and lower thermosphere. While the focus of this paper is on 3D forcings, it is shown that this generating mechanism can explain some of the mean wind and secondary wave features generated from wave breaking in a 2D nonlinear model study. Deep 3D body forces, which generate secondary waves very efficiently, create high-frequency waves with large vertical wavelengths that possess large momentum fluxes. The efficiency of this forcing is independent of latitude. However, the spatial and temporal variability/intermittency of a body force is important in determining the properties and associated momentum fluxes of the secondary waves. High spatial and temporal variability accompanying a wave breaking process leads to large secondary wave momentum fluxes. If a body force varies slowly with time, negligible secondary wave fluxes result. Spatial variability is important because distributing “averaged” body forces over larger regions horizontally (as is often necessary in GCM models) results in waves with smaller frequencies, larger horizontal wavelengths, and smaller associated momentum fluxes than would otherwise result. Because some of the secondary waves emitted from localized body force regions have large vertical wavelengths and large intrinsic phase speeds, the authors anticipate that secondary wave radiation from wave breaking in the mesosphere may play a significant role in the momentum budget well into the thermosphere.

Corresponding author address: Dr. Sharon L. Vadas, Colorado Research Associates Division, North West Research Associates, Inc., 3380 Mitchell Lane, Boulder, CO 80301. Email: vasha@colorado-research.com

Abstract

The authors propose that the body force that accompanies wave breaking is potentially an important linear mechanism for generating secondary waves that propagate into the mesosphere and lower thermosphere. While the focus of this paper is on 3D forcings, it is shown that this generating mechanism can explain some of the mean wind and secondary wave features generated from wave breaking in a 2D nonlinear model study. Deep 3D body forces, which generate secondary waves very efficiently, create high-frequency waves with large vertical wavelengths that possess large momentum fluxes. The efficiency of this forcing is independent of latitude. However, the spatial and temporal variability/intermittency of a body force is important in determining the properties and associated momentum fluxes of the secondary waves. High spatial and temporal variability accompanying a wave breaking process leads to large secondary wave momentum fluxes. If a body force varies slowly with time, negligible secondary wave fluxes result. Spatial variability is important because distributing “averaged” body forces over larger regions horizontally (as is often necessary in GCM models) results in waves with smaller frequencies, larger horizontal wavelengths, and smaller associated momentum fluxes than would otherwise result. Because some of the secondary waves emitted from localized body force regions have large vertical wavelengths and large intrinsic phase speeds, the authors anticipate that secondary wave radiation from wave breaking in the mesosphere may play a significant role in the momentum budget well into the thermosphere.

Corresponding author address: Dr. Sharon L. Vadas, Colorado Research Associates Division, North West Research Associates, Inc., 3380 Mitchell Lane, Boulder, CO 80301. Email: vasha@colorado-research.com

Save