• Andsager, K., K. V. Beard, and N. F. Laird, 1999: Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56 , 26732683.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1984: Oscillation modes for predicting raindrop axis and backscatter ratios. Radio Sci., 19 , 6774.

  • Beard, K. V., and A. R. Jameson, 1983: Raindrop canting. J. Atmos. Sci., 40 , 448454.

  • Beard, K. V., and C. Chuang, 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44 , 15091524.

  • Beard, K. V., and R. J. Kubesh, 1991: Laboratory measurements of small raindrop distortion. Part II: Oscillation frequencies and modes. J. Atmos. Sci., 48 , 22452264.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., A. V. Ryzhkov, and D. S. Zrnić, 2001: An evaluation of radar rainfall estimates from specific differential phase. J. Atmos. Oceanic Technol., 18 , 363375.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G. Huang, V. Chandrasekar, and T. D. Keenan, 2001a: An areal rainfall estimator using differential propagation phase: Evaluation using a C-band radar and a dense gauge network in the Tropics. J. Atmos. Oceanic Technol., 18 , 18101818.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., T. D. Keenan, and V. Chandrasekar, 2001b: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. Trans. IEEE Geosci. Remote Sens., 39 , 19061915.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G. J. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19 , 633655.

    • Search Google Scholar
    • Export Citation
  • Brunkow, D., V. N. Bringi, P. C. Kennedy, S. A. Rutledge, V. Chandrasekar, E. A. Mueller, and R. K. Bowie, 2000: A description of the CSU–CHILL National Radar Facility. J. Atmos. Oceanic Technol., 17 , 15961608.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., V. N. Bringi, A. Ryzhkov, A. Zahrai, and D. S. Zrnić, 2000: Polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17 , 257278.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52 , 838851.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and Z. Levin, 1986: The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Climate Appl. Meteor., 25 , 13461364.

    • Search Google Scholar
    • Export Citation
  • Goddard, J. W. F., and S. M. Cherry, 1984: The ability of dual-polarization radar (copolar linear) to predict rainfall rate and microwave attenuation. Radio Sci., 19 , 201208.

    • Search Google Scholar
    • Export Citation
  • Goddard, J. W. F., S. M. Cherry, and V. N. Bringi, 1982: Comparison of dual-polarization measurements of rain with ground-based disdrometer measurements. J. Appl. Meteor., 21 , 252256.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. N. Bringi, 2000: Measurement of mean raindrop shape from polarimetric radar observations. J. Atmos. Sci., 57 , 34063413.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. N. Bringi, 2001: Rainfall estimation from polarimetric radar measurements: Composite algorithms independent of raindrop shape-size relation. J. Atmos. Oceanic Technol., 18 , 17731786.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., V. Chandrasekar, V. N. Bringi, and G. Scarchilli, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59 , 23732384.

    • Search Google Scholar
    • Export Citation
  • Green, A. W., 1975: An approximation for the shape of large raindrops. J. Appl. Meteor., 14 , 15781583.

  • Hendry, A., Y. M. M. Antar, and G. C. McCormick, 1987: On the relationship between the degree of preferred orientation in precipitation and dual polarization radar echo characteristics. Radio Sci., 22 , 3750.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., and R. C. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup and evaporation: Theory and observations. J. Atmos. Sci., 52 , 17811783.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12 , 643648.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and T. M. Blackman, 1999: The need to normalize rsds based on gamma rsd formulations and implications for interpreting polarimetric radar data. Preprints, 29th Conf. on Radar Meteorology, Montreal, QC, Canada, Amer. Meteor. Soc., 629–631.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1985: Microphysical interpretation of multi-parameter radar measurements in rain. Part III: Interpretation and measurement of propagation differential phase shift between orthogonal linear polarizations. J. Atmos. Sci., 42 , 607614.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1967: A raindrop spectrograph with automatic analysis. Pure Appl. Geophys., 68 , 240246.

  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19 , 602617.

  • May, P. T., T. D. Keenan, D. S. Zrnić, L. D. Carey, and S. A. Rutledge, 1999: Polarimetric radar measurements of maritime rain at a 5-cm wavelength. J. Appl. Meteor., 38 , 750765.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors. 1999: Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80 , 191216.

    • Search Google Scholar
    • Export Citation
  • Randall, M., J. Lutz, and J. Fox, 1997: S-POL's high isolation mechanical polarization switch. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 252–253.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35 , 20802090.

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1971: Doppler radar observations of drop size distributions in a thunderstorm. J. Atmos. Sci., 28 , 983994.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15 , 6976.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci., 13 , 271275.

    • Search Google Scholar
    • Export Citation
  • Sempere-Torres, D., J. M. Porra, and J. D. Creutin, 1994: A general formulation for rain drop size distribution. J. Appl. Meteor., 33 , 14941502.

    • Search Google Scholar
    • Export Citation
  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17 , 322356.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, P. Amayenc, and R. A. Black, 2001: The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40 , 11181140.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40 , 20832097.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22 , 17641775.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37 , 912923.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., M. Petitididier, and E. F. Campos, 1999: Radar properties of maritime rain found from disdrometer data at Arecibo, Puerto Rico. Preprints, 29th Int. Conf. on Radar Meteorology, Montreal, QC, Canada, Amer. Meteor. Soc., 676–679.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The No jump of raindrop spectra. J. Atmos. Sci., 31 , 10671078.

  • Waldvogel, A., H. Werner, and W. Schmid, 1995: Raindrop size distributions and radar reflectivity profiles. Preprints, 27th Int. Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 26–30.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., A. Kruger, K. S. Gage, A. Tokay, R. Cifelli, W. F. Krajewski, and C. Kummerow, 2000: Comparison of simultaneous raindrop size distributions estimated from two surface disdrometers and a UHF profiler. Geophys. Res. Lett., 27 , 17631766.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41 , 16481661.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1708 781 86
PDF Downloads 1750 829 83

Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis

V. N. BringiColorado State University, Fort Collins, Colorado

Search for other papers by V. N. Bringi in
Current site
Google Scholar
PubMed
Close
,
V. ChandrasekarColorado State University, Fort Collins, Colorado

Search for other papers by V. Chandrasekar in
Current site
Google Scholar
PubMed
Close
,
J. HubbertColorado State University, Fort Collins, Colorado

Search for other papers by J. Hubbert in
Current site
Google Scholar
PubMed
Close
,
E. GorgucciInstituto di Fisica dell'Atmosfera (CNR), Rome, Italy

Search for other papers by E. Gorgucci in
Current site
Google Scholar
PubMed
Close
,
W. L. RandeuTechnical University of Graz and Joanneum Research, Graz, Austria

Search for other papers by W. L. Randeu in
Current site
Google Scholar
PubMed
Close
, and
M. SchoenhuberTechnical University of Graz and Joanneum Research, Graz, Austria

Search for other papers by M. Schoenhuber in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The application of polarimetric radar data to the retrieval of raindrop size distribution parameters and rain rate in samples of convective and stratiform rain types is presented. Data from the Colorado State University (CSU), CHILL, NCAR S-band polarimetric (S-Pol), and NASA Kwajalein radars are analyzed for the statistics and functional relation of these parameters with rain rate. Surface drop size distribution measurements using two different disdrometers (2D video and RD-69) from a number of climatic regimes are analyzed and compared with the radar retrievals in a statistical and functional approach. The composite statistics based on disdrometer and radar retrievals suggest that, on average, the two parameters (generalized intercept and median volume diameter) for stratiform rain distributions lie on a straight line with negative slope, which appears to be consistent with variations in the microphysics of stratiform precipitation (melting of larger, dry snow particles versus smaller, rimed ice particles). In convective rain, “maritime-like” and “continental-like” clusters could be identified in the same two-parameter space that are consistent with the different multiplicative coefficients in the Z = aR1.5 relations quoted in the literature for maritime and continental regimes.

Corresponding author address: V. N. Bringi, Dept. of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523-1373. Email: bringi@engr.colostate.edu

Abstract

The application of polarimetric radar data to the retrieval of raindrop size distribution parameters and rain rate in samples of convective and stratiform rain types is presented. Data from the Colorado State University (CSU), CHILL, NCAR S-band polarimetric (S-Pol), and NASA Kwajalein radars are analyzed for the statistics and functional relation of these parameters with rain rate. Surface drop size distribution measurements using two different disdrometers (2D video and RD-69) from a number of climatic regimes are analyzed and compared with the radar retrievals in a statistical and functional approach. The composite statistics based on disdrometer and radar retrievals suggest that, on average, the two parameters (generalized intercept and median volume diameter) for stratiform rain distributions lie on a straight line with negative slope, which appears to be consistent with variations in the microphysics of stratiform precipitation (melting of larger, dry snow particles versus smaller, rimed ice particles). In convective rain, “maritime-like” and “continental-like” clusters could be identified in the same two-parameter space that are consistent with the different multiplicative coefficients in the Z = aR1.5 relations quoted in the literature for maritime and continental regimes.

Corresponding author address: V. N. Bringi, Dept. of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523-1373. Email: bringi@engr.colostate.edu

Save