• Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, 1992: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt., 31 , 71137131.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and K. Sassen, 2001: Retrieval of cirrus cloud radiative and backscattering properties using combined lidar and infrared radiometer (LIRAD) measurements. J. Atmos. Oceanic Technol., 18 , 16581673.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate research. J. Climate, 9 , 20582082.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared transfer. J. Atmos. Sci., 54 , 27992812.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., Y. Ping, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11 , 22232237.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and K. Sassen, 1994: Investigation of relationships between Ka-band radar reflectivity and ice and liquid water contents. Atmos. Res., 34 , 231248.

    • Search Google Scholar
    • Export Citation
  • Liou, K-N., 1986: The influence of cirrus on weather and climate processes: A global perspective. Mon. Wea. Rev., 114 , 11671199.

  • Lohmann, U., and E. Roeckner, 1995: Influence of cirrus cloud radiative forcing on climate and climate sensitivity in a general circulation model. J. Geophys. Res., 100 , 1630516323.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2002: Effective diameter in radiative transfer: General definition, applications, and limitations. J. Atmos. Sci., 59 , 23302346.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci., 30 , 11911204.

  • Platt, C. M. R., and A. C. Dilley, 1981: Remote sounding of high clouds. IV: Observed temperature variations in cirrus optical profiles. J. Atmos. Sci., 38 , 10691082.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., and Harshvardhan, 1988: Temperature dependence of cirrus extinction: Implications for climate feedback. J. Geophys. Res., 93 , 1105111058.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., J. C. Scott, and A. C. Dilley, 1987: Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus. J. Atmos. Sci., 44 , 729747.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, and J. H. Churnside, 1998: The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment. J. Atmos. Sci., 55 , 19771996.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 2002: Cirrus clouds: A modern perspective. Cirrus, D. Lynch et al., Eds., Oxford University Press, 11–40.

  • Sassen, K., and J. M. Comstock, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative properties. J. Atmos. Sci., 58 , 21132127.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., R. P. Benson, and J. D. Spinhirne, 2000: Tropical cirrus cloud properties from TOGA/COARE airborne polarization lidar. Geophys. Res. Lett., 27 , 673676.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., J. M. Comstock, and Z. Wang, 2001a: Parameterization of the radiative properties of midlatitude high and middle level clouds. Geophys. Res. Lett., 28 , 729732.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., J. M. Comstock, Z. Wang, and G. G. Mace, 2001b: Cloud and aerosol research capabilities at FARS: The Facility for Atmospheric Remote Sensing. Bull. Amer. Meteor. Soc., 82 , 11191138.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, V. I. Khvorostyanov, G. L. Stephens, and A. Benedetti, 2002: Cirrus cloud ice water content radar algorithm evaluation using an explicit cloud microphysical model. J. Appl. Meteor., 41 , 620628.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., and G. L. Stephens, 1991: A theoretical and observational study of the radiative properties of cirrus clouds: Results from FIRE 1986. J. Atmos. Sci., 48 , 20442059.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S. Tsay, P. W. Stackhouse Jr., and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback. J. Atmos. Sci., 47 , 371396.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and K. Sassen, 2002a: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part I: Algorithm description and comparison with in situ data. J. Appl. Meteor., 41 , 218229.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and K. Sassen, 2002b: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part II: Midlatitude cirrus microphysical and radiative properties. J. Atmos. Sci., 59 , 22912302.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., W. P. Menzel, H. M. Woolf, and K. I. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7 , 170184.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 15 3
PDF Downloads 22 9 3

Parameterization of Infrared Absorption in Midlatitude Cirrus Clouds

Kenneth SassenGeophysical Institute, University of Alaska, Fairbanks, Fairbanks, Alaska

Search for other papers by Kenneth Sassen in
Current site
Google Scholar
PubMed
Close
,
Zhien WangUniversity of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Zhien Wang in
Current site
Google Scholar
PubMed
Close
,
C. M. R. PlattDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by C. M. R. Platt in
Current site
Google Scholar
PubMed
Close
, and
Jennifer M. ComstockPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Jennifer M. Comstock in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Employing a new approach based on combined Raman lidar and millimeter-wave radar measurements and a parameterization of the infrared absorption coefficient σa (km−1) in terms of retrieved cloud microphysics, a statistical relation between σa and cirrus cloud temperature is derived. The relations σa = 0.3949 + 5.3886 × 10−3T + 1.526 × 10−5T2 for ambient temperature T(°C) and σa = 0.2896 + 3.409 × 10−3Tm for midcloud temperature Tm(°C) are found using a second-order polynomial fit. Comparison with two σa-versus-Tm relations obtained primarily from midlatitude cirrus using the combined lidar–infrared radiometer (LIRAD) approach reveals significant differences. However, it is shown that this reflects both the previous convention used in curve fitting (i.e., σa → 0 at ∼−80°C) and the types of clouds included in the datasets. Without such constraints, convergence is found in the three independent remote sensing datasets within the range of conditions considered to be valid for cirrus (i.e., cloud visible optical depth less than ∼3.0 and Tm less than ∼−20°C). Hence, for completeness, reanalyzed parameterizations for a visible extinction coefficient σe-versus-Tm relation for midlatitude cirrus and a data sample involving cirrus that evolved into midlevel altostratus clouds with higher optical depths are also provided.

Additional affiliation: CSIRO Division of Atmospheric Research, Aspendale, Victoria, Australia

Corresponding author address: Kenneth Sassen, Geophysical Institute, University of Alaska, Fairbanks, P.O. Box 757320, Fairbanks, AK 99775. Email: ksassen@gi.alaska.edu

Abstract

Employing a new approach based on combined Raman lidar and millimeter-wave radar measurements and a parameterization of the infrared absorption coefficient σa (km−1) in terms of retrieved cloud microphysics, a statistical relation between σa and cirrus cloud temperature is derived. The relations σa = 0.3949 + 5.3886 × 10−3T + 1.526 × 10−5T2 for ambient temperature T(°C) and σa = 0.2896 + 3.409 × 10−3Tm for midcloud temperature Tm(°C) are found using a second-order polynomial fit. Comparison with two σa-versus-Tm relations obtained primarily from midlatitude cirrus using the combined lidar–infrared radiometer (LIRAD) approach reveals significant differences. However, it is shown that this reflects both the previous convention used in curve fitting (i.e., σa → 0 at ∼−80°C) and the types of clouds included in the datasets. Without such constraints, convergence is found in the three independent remote sensing datasets within the range of conditions considered to be valid for cirrus (i.e., cloud visible optical depth less than ∼3.0 and Tm less than ∼−20°C). Hence, for completeness, reanalyzed parameterizations for a visible extinction coefficient σe-versus-Tm relation for midlatitude cirrus and a data sample involving cirrus that evolved into midlevel altostratus clouds with higher optical depths are also provided.

Additional affiliation: CSIRO Division of Atmospheric Research, Aspendale, Victoria, Australia

Corresponding author address: Kenneth Sassen, Geophysical Institute, University of Alaska, Fairbanks, P.O. Box 757320, Fairbanks, AK 99775. Email: ksassen@gi.alaska.edu

Save