• Arya, S. P., 1998: Introduction to Micrometeorology. Academic Press, 420 pp.

  • Ballard, S. P., B. W. Golding, and R. N. B. Smith, 1991: Mesoscale model experimental forecasts of the Haar of northeast Scotland. Mon. Wea. Rev., 119 , 21072123.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30 , 327341.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., 1997: Mixing height estimation from sodar—A critical discussion. Atmos. Environ., 21 , 39413953.

  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38 , 283290.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67 , 30953102.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci., 35 , 14271440.

    • Search Google Scholar
    • Export Citation
  • Burns, S., J. Sun, A. C. Delany, T. W. Horst, and S. P. Oncley, 2003: A field intercomparison technique to improve the relative accuracy of longwave radiation measurements and an evaluation of CASES-99 pyrgeometer data quality. J. Atmos Oceanic Technol., 20 , 348361.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., 2002: On internal gravity waves associated with the stable boundary layer. Bound.-Layer Meteor., 102 , 139155.

  • Cuxart, J. C., and Coauthors. 2000: Stable Atmospheric Boundary-Layer Experiment in Spain (SABLE 98): A report. Bound.-Layer Meteor., 96 , 337370.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., 1974: A numerical study of the nocturnal atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 100 , 351364.

  • Delage, Y., P. A. Bartlett, and J. H. McCaughey, 2002: Study of “soft” night-time surface-layer decoupling over forest canopies in a land surface model. Bound.-Layer Meteor., 103 , 253276.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S., 1999: Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Bound.-Layer Meteor., 90 , 297325.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7 , 363372.

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Ha, K-J., and L. Mahrt, 2001: Simple inclusion of z-less turbulence within and above the modeled nocturnal boundary layer. Mon. Wea. Rev., 129 , 21362143.

    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., 1978: Some limitations of dimensional analysis and power laws. Bound.-Layer Meteor., 14 , 567569.

  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78 , 215246.

  • Kim, J., and L. Mahrt, 1992: Simple formulation of turbulent mixing in the stable free atmosphere and nocturnal boundary layer. Tellus, 44A , 381394.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90 , 375396.

  • Mahrt, L., and D. Vickers, 2002: Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteor., 105 , 351363.

  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Akad. Nauk SSSR Geofiz. Inst., 24 , 163187.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1971: Statistical Fluid Mechanics. Vol. 1.,. Mechanics of Turbulence, MIT Press, 769 pp.

  • Monti, P., H. J. S. Fernando, M. Princevac, W. C. Chan, T. A. Kowalewski, and E. R. Pardyjak, 2002: Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci., 59 , 25132534.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 1991: Sporadic breakdown of stability in the PBL over simple and complex terrain. Bound.-Layer Meteor., 54 , 6987.

  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41 , 22022216.

  • Ohya, Y., 2001: Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Bound.-Layer Meteor., 98 , 5782.

  • Ostdiek, V., and W. Blumen, 1997: A dynamic trio: Inertial oscillation, deformation frontogenesis, and the Ekman–Taylor boundary layer. J. Atmos. Sci., 54 , 14901502.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors. 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83 , 757779.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 1994: Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Bound.-Layer Meteor., 71 , 211216.

    • Search Google Scholar
    • Export Citation
  • Savijärvi, H., and J. Kauhanen, 2002: High resolution numerical simulations of temporal and vertical variability in the stable wintertime boreal boundary layer: A case study. Theor. Appl. Climatol., 70 , 97103.

    • Search Google Scholar
    • Export Citation
  • Smedman, A-S., 1988: Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer. Bound.-Layer Meteor., 44 , 231253.

    • Search Google Scholar
    • Export Citation
  • Smedman, A-S., H. Tjernström, and U. Högström, 1993: Analysis of the turbulence structure of a marine low-level jet. Bound.-Layer Meteor., 66 , 105126.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1986: On similarity in the atmospheric boundary layer. Bound.-Layer Meteor., 34 , 377398.

  • Sorbjan, Z., 1988: Structure of the stably-stratified boundary layer during the SESAME-1979 experiment. Bound.-Layer Meteor., 44 , 255266.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1989: Structure of the Atmospheric Boundary Layer. Prentice Hall, 317 pp.

  • Stull, R. B., 1990: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sun, J., 1999: Diurnal variation of thermal roughness height over a grassland. Bound.-Layer Meteor., 92 , 407427.

  • Sun, J., and Coauthors. 2003: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105 , 199219.

    • Search Google Scholar
    • Export Citation
  • Therry, G., and P. Lacarrere, 1983: Improving the eddy kinetic energy model for p.b.l. description. Bound.-Layer Meteor., 25 , 6388.

  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129148.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14 , 512526.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 1999: Observations of nondimensional shear in the coastal zone. Quart. J. Roy. Meteor. Soc., 125 , 26852702.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2003: The cospectral gap and turbulent flux calculations. J. Atmos. Oceanic Technol., 20 , 660672.

  • Wyngaard, J. C., 1973: On surface-layer turbulence. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 101–149.

  • Zilitinkevich, S., and D. Mironov, 1996: A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer. Bound.-Layer Meteor., 81 , 325351.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 257 46 7
PDF Downloads 94 44 6

Formulation of Turbulent Fluxes in the Stable Boundary Layer

L. MahrtCollege of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by L. Mahrt in
Current site
Google Scholar
PubMed
Close
and
Dean VickersCollege of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Dean Vickers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The mixing lengths for heat and momentum are computed from seven levels of eddy correlation data during the Cooperative Atmosphere–Surface Exchange Study-1999 (CASES-99). A number of formulations of the mixing length are evaluated, including surface layer similarity theory, several hybrid similarity theories, a formulation based on the Richardson number, and a formulation based on the local shear. A formulation of the mixing length is examined, which approaches z-less similarity for large z and surface layer similarity close to the ground surface. A generalized version includes a dependence on boundary layer depth, which approaches the usual boundary layer height dependence for neutral conditions. However, for many of the observational cases, a boundary layer did not exist in the usual sense, in that turbulence was generated primarily above the surface inversion layer and occasionally extended downward toward the surface. For these cases, inclusion of z-less turbulence is crucial.

Corresponding author address: Dr. Larry Mahrt, College of Oceanic and Atmospheric Sciences, Oregon State University, 104 Ocean Adm. Building, Corvallis, OR 97331-5503. Email: mahrt@coas.oregonstate.edu

Abstract

The mixing lengths for heat and momentum are computed from seven levels of eddy correlation data during the Cooperative Atmosphere–Surface Exchange Study-1999 (CASES-99). A number of formulations of the mixing length are evaluated, including surface layer similarity theory, several hybrid similarity theories, a formulation based on the Richardson number, and a formulation based on the local shear. A formulation of the mixing length is examined, which approaches z-less similarity for large z and surface layer similarity close to the ground surface. A generalized version includes a dependence on boundary layer depth, which approaches the usual boundary layer height dependence for neutral conditions. However, for many of the observational cases, a boundary layer did not exist in the usual sense, in that turbulence was generated primarily above the surface inversion layer and occasionally extended downward toward the surface. For these cases, inclusion of z-less turbulence is crucial.

Corresponding author address: Dr. Larry Mahrt, College of Oceanic and Atmospheric Sciences, Oregon State University, 104 Ocean Adm. Building, Corvallis, OR 97331-5503. Email: mahrt@coas.oregonstate.edu

Save